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Abstract—Model predictive direct current control (MPDCC)
has emerged as a promising control scheme for high-power
power electronic applications, achieving very low current dis-
tortion levels and fast dynamic responses. This is achieved by
addressing the current control and the modulation problems in
one computational stage. For MPDCC the issue of closed-loop
stability has not yet been investigated. In this paper, it will be
shown that the MPDCC algorithm guarantees stability, i.e. the
load currents are moved into given bounds and kept inside of
these bounds. It will also be shown that—by slightly modifying
the MPDCC algorithm—robustness to parameter uncertainties
can be established.

I. INTRODUCTION

Model predictive control (MPC) for power electronics has

received a lot of attention during the past few years—both in

academia as well as in industry. The availability of ubiquitous

and cheap computational hardware has facilitated this rise.

For three-phase AC systems, broadly speaking, MPC without

a subsequent modulator can be classified into two main

groups, namely MPC with reference tracking of the controlled

variables, and MPC with (upper and lower) bounds imposed

on the controlled variables.

The main advantage of the first group, MPC with reference

tracking, is its simplicity and versatility [7]. It appears to be

particularly well suited for low voltage applications where the

pulse number (switching frequency divided by the fundamental

frequency) tends to be high, typically exceeding 50.

In contrast to that, the second group, MPC with bounds

on the controlled variables, excels for systems with very low

pulse numbers in the single digit range. Its advantages are

very low current distortion levels for a given pulse number,

or, conversely, a very low switching effort (i.e. switching

frequency or losses) for a given current distortion level.

However, the computations required to solve the underlying

optimization problem are often fairly demanding.

The model predictive direct control family (MPDxC) with

x ∈ {T,C, P,B}, representing the torque, current, power

and balancing, respectively, has been established over the

past decade. More specifically, model predictive direct torque

(MPDTC) was proposed in 2005 [8], [16] as a successor

of DTC [26] and generalized in 2009 to arbitrary switching

horizons [9]. At steady-state operating conditions, MPDTC

provides switching losses and current distortions similar to the

ones typically achieved by optimized pulse patterns [6], while

during transients, its dynamic response is as fast as the one of
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DTC [10]. Model predictive direct current control (MPDCC)

is a derivative of MPDTC [13], while model predictive direct

power control (MPDPC) is the adaptation of MPDTC to grid-

connected converters [17]. Model predictive direct balancing

control (MPDBC) is the most recent member of the family,

being used to control the internal voltages of multi-level

converters [19].

Numerous studies have confirmed that MPC has the poten-

tial to provide significant performance gains, when compared

to more traditional control methods, in particular when con-

verters are operated outside of their basic regimens; see e.g.,

[3], [21], [22].

Despite the good performance that MPC formulations for

power converters in principle offer, there remain several open

problems, being one of the most important, the stability issue.

Recently, in [1], a stability analysis of power converters

governed by MPC has been presented. The distinguishing

aspect of this analysis is that power converters are modeled

as linear systems, where the input vector, i.e. the switching

positions or converter voltage levels, is restricted to belong to a

finite set of possible control actions. For this setup, Lyapunov

stability in a neighborhood of the desired reference can be

established; see [2], [23] for a in depth presentation.

Another approach to model power converters is to interpret

them as hybrid or switched (non)linear systems [25]. Power

converters can be described by a set of discrete operation

modes with associated continuous dynamics (involving volt-

ages, currents, etc.). Switching triggers events that lead to

jumps between the modes. Based on this approach, in [15],

a so-called ν−resolution model was introduced to obtain

a piecewise-affine form of the system, based on which an

explicit MPC solution can be obtained in an offline proce-

dure [4]. The disadvantage of this approach stems from the fact

that the control law’s complexity (number of regions) grows

exponentially with the length of the prediction horizon. For

more details about the stability of hybrid systems governed

by MPC the reader is referred to [20].
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Fig. 1: Three-level neutral point clamped voltage source converter with a fixed
neutral point potential connected to an active resistive-inductive load
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So far, one important aspect has not yet been considered

for the MPDxC family—closed-loop stability. For a key rep-

resentative of this family, MPDCC, first results on closed-

loop stability and robust stability will be presented in this

contribution. The former can be directly established by the

way the control algorithm has been designed. The reasoning

is thus straightforward. For the latter—robust stability—a

small modification in the algorithm is proposed that ensures

robustness to bounded additive parameter uncertainties.

II. CASE STUDY

Throughout this paper, we will use normalized quantities.

Extending this to the time scale t, one time unit corresponds

to 1/ωb seconds, where ωb is the base angular velocity.

Additionally, we will use ξ(t), t ∈ R, to denote continuous-

time variables, and ξ(k), k ∈ N, to denote discrete-time

variables with the sampling interval Ts.

A. The dq Reference Frame

All variables ξabc = [ξa ξb ξc]
T in the three-phase system

(abc) are transformed to ξdq = [ξd ξq]
T in the orthogonal

and rotating dq reference frame through ξdq = P (ϕ) ξabc,

where ϕ denotes the angle between the a-axis of the three-

phase system and the d-axis of the reference frame. The

reference frame rotates with the angular speed ωfr = dϕ/dt.
The transformation matrix is given by

P (ϕ) =
2

3

[

cos(ϕ) cos(ϕ− 2π
3 ) cos(ϕ+ 2π

3 )

− sin(ϕ) − sin(ϕ− 2π
3 ) − sin(ϕ+ 2π

3 )

]

.

(1)

The stationary (i.e. non-rotating) αβ reference frame is

obtained by setting both ϕ and ωfr to zero. The d- and q-

axes are then referred to as α- and β-axes, respectively. The

transformation from the abc to the αβ reference frame is

defined through ξαβ = P (0) ξabc.

B. NPC Converter

As an example for a medium-voltage three-phase system,

consider a three-level neutral point clamped (NPC) voltage

source converter with an active resistive-inductive (RL) load,

as shown in Fig. 1. The converter is fed by two constant dc-

link voltage sources. The total dc-link voltage is Vdc.

Let the integer variables ua, ub, uc ∈ {−1, 0, 1} denote the

switch positions in each phase leg, where the values −1, 0, 1
correspond to the phase voltages −Vdc

2 , 0, Vdc

2 , respectively. The

single-phase switch positions can be aggregated to the three-

phase switch position u = uabc = [ua ub uc]
T with u ∈

U = {−1, 0, 1}3. The actual voltage at the converter terminals,

commonly referred to as voltage vector, is given by

vdq =
1

2
Vdc P (ϕ)uabc , (2)

with vdq ∈ V(ϕ), where the set V(ϕ) is the image of U when

using the linear transformation (2).

C. Three-Phase Load

Consider a generic and symmetric three-phase load, as

shown in Fig. 1. Each phase comprises the load resistor R,

the inductor Xl and the voltage source vl. The latter vary

sinusoidally over time with the frequency ωe. The star point

of the load is not connected.

This setup may, for example, represent an active front end

connected to the grid, or the machine-side converter of an

electrical drive with an AC machine. In the remainder of the

paper we will consider the former setup1.

Using vector notation, the load can be easily modeled in

the dq reference frame

didq
dt

=
1

Xl

(vdq − vl,dq)−
R

Xl

idq − ωfr

[

0 −1

1 0

]

idq , (3)

where we set ωfr = ωe. As a result, the load voltage vl,dq is

time-invariant in this reference frame. Note that, according to

(2), vdq denotes the voltage at the converter terminals.

Correspondingly, an equivalent model of the load in αβ
coordinates is

diαβ
dt

=
1

Xl

(vαβ − vl,αβ)−
R

Xl

iαβ , (4)

where the evolution of the load voltage can be described by

dvl,αβ

dt
= ωeΥvl,αβ , Υ =

[

0 −1

1 0

]

(5)

and an appropriate initial condition.

III. CONTROL PROBLEM FORMULATION

A. Control Problem

The current control problem at hand is to keep the three

phase currents of the load, ia, ib and ic, within upper and lower

bounds around their respective reference values iref,a, iref,b

and iref,c. Using symmetric bounds and letting δi denote the

difference between the upper (lower) bound and a reference,

the current constraints are given by

|iref,a − ia| ≤ δi , |iref,b − ib| ≤ δi , |iref,c − ic| ≤ δi . (6)

To simplify the exposition in this paper, the hexagon-shaped

set of bounds (6) is approximated by a circular bound with

radius δi, centered at the three-phase reference current iref =
[iref,a iref,b iref,c]

T . We thus impose

i ∈ X i , X i = {i ∈ R
2 : ||iref − i||2 ≤ δi} (7)

During step changes or transients, when bound violations

might occur, the current is to be promptly moved back into

its circular bound. As a metric for the degree of the violation

serves the Euclidean distance between i and the closest point

on the circle.

ǫi = ||iref − i||2 − δi , for i /∈ X i . (8)

1The figures in this paper were created using the following set of per unit
parameters: Vdc = 1.93, R = 0.01, Xl = 0.2, vl = 1, ωe = 1, ωfr = 1,
iref = 0.6 and δi = 0.15. The sampling interval is Ts = 25µs.
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At steady state operating conditions, the total harmonic

distortion (THD) of the current is to be kept small. During

transients, a high dynamic performance is to be ensured,

i.e. a short current settling time in the range of a few ms.

Moreover, with regard to the converter, the switching losses

in the semiconductors are to be minimized. An indirect way

of achieving this is to reduce the device switching frequency.

B. Set of Voltage Vectors

The set of discrete voltage vectors that can be synthesized

by the NPC converter are contained in a circular set according

to

v ∈ X dc, X dc = {v ∈ R
2 : ||v||2 ≤ δdc} . (9)

From (1) and (2) the radius of the enclosing circle can be

calculated as δdc = 2/3Vdc. The envelope of X dc is shown in

Fig. 2 as a dashed (black) circle.

C. Control Principle

The control principle of direct current control is best ex-

plained in the rotating dq reference frame, as shown in Fig. 2.

The controller operates in the discrete-time domain with the

switch positions held constant during the sampling interval Ts.

Assuming a power factor of one, the load voltage vl and the

current reference iref are co-linear and are chosen to be aligned

with the d-axis.

The forward Euler approximation of (3) yields at time-step

k the discrete time-domain representation

i(k + 1) = i(k) +
Ts

Xl

(v(k)− vss(k)) , (10)

where we have omitted the dq indices to simplify the notation

and introduced

vss(k) = vl(k) +
(

R+ ωfrΥXl

)

i(k) . (11)

Assume, as shown in Fig. 2, i(k) to have hit the circular

bound. A voltage vector v(k) needs to be chosen that keeps

the current within its bound. Note that the voltage difference

v(k)− vss(k) drives the required change in the current.

Using (10) the circular current bound can be translated into a

circular voltage bound, partly depicted as a large dashed (blue)

circle in Fig. 2. Correspondingly, the current set region X i

can be translated into a voltage set region X v . The selection

of any voltage vector that is contained in this circle, v(k) ∈
Xv , ensures i(k + 1) ∈ Xi, namely the current will be kept

within its bound. The set of available discrete voltage vectors

is depicted by small circles, with yellow circles referring to

v(k) ∈ Xv and blue ones to v(k) /∈ Xv .

MPDCC chooses the voltage vector v(k) in an optimal

manner. For that purpose, an objective function needs to be

formulated and an optimization problem is to be solved, as

shown in the next section.
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Fig. 2: Control principle of direct current control in the dq reference frame,
when hitting the current bound

D. Optimization Problem

Writing the above control problem as a closed-form opti-

mization problem leads to

J∗(x(k),u(k − 1)) = min
U(k)

(

Jsw + Jbnd

)

(12a)

s. t. x(ℓ+ 1) = Ax(ℓ) +Bu(ℓ) (12b)

Cx(ℓ+ 1) ∈ X i(ℓ+ 1) or ǫi(ℓ+ 1) < ǫi(ℓ) (12c)

u(ℓ) ∈ U , (12d)

∀ℓ = k, . . . , k +Np − 1 , (12e)

with J∗ denoting the minimum of the objective function

J = Jsw + Jbnd. The sequence of control inputs U(k) =
[uT (k),uT (k+1) . . . ,uT (k+Np − 1)]T over the prediction

horizon Np represents the sequence of converter switch posi-

tions the controller decides upon. The objective function (12a)

is minimized subject to the dynamical evolution of the load

model (12b) and the constraints (12c) and (12d). The variables

and matrices in (12) will be defined in the remainder of this

section.

E. Objective Function

The objective function captures the switching effort, namely

Jsw =
1

NpTs

k+Np−1
∑

ℓ=k

||∆u(ℓ)||1 (13)

represents the sum of the switching transitions (number of

commutations) over the prediction horizon Np divided by the

length of the horizon NpTs—it thus approximates the short-

term switching frequency. Alternatively, the switching (power)

losses can be represented, as shown for example in [9].

F. Internal Prediction Model

We opt to state the internal prediction model in stationary

and orthogonal coordinates. The load current and voltage are

chosen as the state vector x = [iαβ vl,αβ ]
T . The three-phase

switch position constitutes the input vector u = uabc, and y =
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iαβ the output vector. Rewriting the continuous-time equations

(4) and (5) in state-space form leads to

dx

dt
(t) = Fx(t) +Gu(t) (14a)

y(t) = Cx(t) , (14b)

with

F =

[

− R
Xl

I − 1
Xl

I

0 ωeΥ

]

, G =
Vdc

2Xl

[

P (0)

0

]

, C = I .

(15)

Here, I denotes identity matrices and 0 zero matrices of

appropriate dimensions. The exact Euler discretization method

can be used to derive the discrete-time matrices A = eFTs

and B = −F−1(I − A)G for the discrete-time state-space

representation of the prediction model (12b), with e denoting

the matrix exponential.

G. Constraints

If at time-step k the current falls within its bound X i as

defined in (7), then it is required to remain within it. This is

the standard case during steady-state operation. If, however, at

time-step k the current violates its bound, then it has to move

closer to the bound at every time-step ℓ within the prediction

horizon, where ℓ = k, . . . , k +Np − 1.

The constraint (12d) limits the control input u to the set of

integers U . This constraint has to be met at every time-step ℓ
within the prediction horizon.

IV. MODEL PREDICTIVE DIRECT CURRENT CONTROL

A. The MPDCC Solution Approach

The above optimization problem can be solved in real-time

by a tailored approach, to which we refer as model predictive

direct current control (MPDCC) [13]. MPDCC relies on the

fact that switching is mainly required in the vicinity of the

bound or when the bound has been violated. When the current

is well within the bound, switching is not required and the

switch position is frozen.

This gives rise to two different prediction horizons—the

switching horizon (the number of switching instants within the

horizon, i.e. the controller’s degree of freedom) and the pre-

diction horizon Np (the number of time-steps MPDCC looks

into the future). Between the switching instants the switch

positions are frozen and the load behavior is extrapolated

until the bound is hit. The concept of extrapolation leads to

long prediction horizons (typically 100 time-steps), while the

switching horizon is very short (usually one to three). The

switching horizon is composed of the elements ’S’ and ’E’,

which stand for ’switch’ and ’extrapolate’ (or more generally

’extend’), respectively. We use the task ’e’ to add an optional

extension leg to the switching horizon. For more details about

the concept of the switching horizon, the reader is referred

to [9].

B. MPDCC Algorithm

Given the pair x(k) and u(k − 1), i.e. the load’s state

vector and the previously chosen converter switch position,

the optimal control input u∗(k) can be computed according

to the following procedure.

1) Initialize the root node with the current state vector

x(k), the switch position u(k − 1) and the switching

horizon. Push the root node onto the stack.

2a) Take the top node with a non-empty switching horizon

from the stack.

2b) Read out the first element. For ’S’, branch on all feasible

switching transitions, according to (12d). Use the inter-

nal prediction model (12b) to compute the state vector

at the next time-step. For ’E’, extend the trajectories

either by using extrapolation, as detailed in [8], [16], or

by using extrapolation with interpolation, as proposed

in [27].

2c) Keep only the switching sequences that meet (12c).

2d) Push these sequences onto the stack.

2e) Stop if there are no more nodes with non-empty switch-

ing horizons. The result of this are the switching se-

quences U i(k) over the variable-length prediction hori-

zons N i
p, where i ∈ I and I is an index set.

3) Compute for each sequence i ∈ I the associated cost

Ji, as defined in (12a).

4) Choose the switching sequence U∗ = U i(k) with the

minimal cost, where i = argmini∈I Ji.
5) Apply (only) the first switch position u∗(k) out of this

sequence and execute the above procedure again at the

next time-step k + 1.

For an in-depth description and analysis of this algorithm,

which is used with minor variations for the whole MPDxC

family, the reader is referred to [9], [16] and [13]. It is

straightforward to consider the balancing of a neutral point

potential, see e.g. [9], [16], and of other internal voltages of

the converter, as shown in [14]. Branch and bound techniques

can be used to reduce the computation time by an order of

magnitude [11].

V. STABILITY

From a mathematical point of view, the states of the system

model (10)–(11) will in general be contained in a bounded

(though large) set and, thus, be practically stable. However,

when applying closed-loop control to a real converter, the load

currents may exceed the safe operating range. To avoid this

crucial issue, in the sequel we will provide a method that not

only ensures practical stability, but also allows one to keep the

currents within a safe region. Our analysis follows in a fairly

direct manner from the way the MPDCC algorithm has been

designed.

A. Convergence to the Bound

We start by showing that, when the current violates the

bound, the current error is reduced at each time step and

the current is brought closer to the bound (this is known

as practical stability or ultimate boundedness [18]). This is

directly imposed by the MPDCC algorithm, specifically by
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Fig. 3: Control principle of direct current control in the dq reference frame,
when violating the current bound

the second constraint in (12c). Only voltage vectors are con-

sidered, which fulfill this condition. We refer to such voltage

vectors as candidates. Voltage vectors that are predicted to

maintain or even increase the degree of the violation, are not

further considered and are not part of the set I.

The set of candidate voltage vectors is given by Vcand =
X v ∩ V , as defined in Sect. III. Since the load voltage vl is

at most of magnitude one and because the resistive-inductive

voltage drop over the load impedance is limited, vss is close to

vl and thus always almost one. By definition, vss is included

in the enclosure of X v . In addition, for small sampling

intervals Ts, the circular set X v approaches a halfspace. Since

the converter under consideration utilizes symmetrical voltage

steps, the discrete voltage vectors are uniformly distributed

in X dc. For sufficiently high dc-link voltages, say 1.8 pu and

more, the set Vcand is always non-empty. As a result, there

always exists at least one voltage vector v(k) ∈ Vcand 6= ∅
that moves the current closer to its bound, i.e.

||i(k + 1)− iref||2 < ||i(k)− iref||2 . (16)

The set of currents at time-step k + 1, for which (16) holds,

is the circular set

i ∈ X̄ i , X̄ i = {i ∈ R
2 : ||iref − i||2 ≤ δ̄i} (17)

with δ̄i = ||iref − i(k)||2. The set’s enclosure is shown as a

dashed (red) circle in Fig. 3.

In order to increase the convergence rate an additional term

may be added to the objective function, such as [12]

Jbnd =

{

0 if i ∈ X i

γǫ2i else .
(18)

This expression can be interpreted as a piecewise quadratic

Lyapunov function, which quadratically penalizes the degree

of the bound violation and is zero when the current is within

its bound. As was shown in [12], this term enforces a faster

convergence rate.

1

2

3

ǫi

Xi

t

Fig. 4: Closed-loop current trajectories versus the time-axis t for three
different scenarios: 1) standard MPDCC with Jbnd = 0; 2) MPDCC with
Jbnd > 0 to increase the convergence rate to the set X i; 3) robust MPDCC
with Jbnd = 0

B. Staying within the Bound

Once the current has entered its bound, i.e. i ∈ X i, the

constraint Cx(ℓ+1) ∈ X i(ℓ+1) is imposed on the predicted

current trajectory, see (12c) in the MPDCC optimization

problem. Only voltage vectors v(k) ∈ X v are considered

which meet this condition. Using the same arguments as in

the previous section, one can show that X cand is non-empty.

We conclude that there always exists at least one voltage vector

v(k) ∈ Vcand 6= ∅ that keeps the current within its bound, i.e.

i(k) ∈ X i ⇒ i(k + 1) ∈ X i

The set X i is thus a control invariant set [5].

VI. ROBUST STABILITY

In the sequel, we will show how the original algorithm

can be modified to account for model imperfections. For that

purpose, we will assume that the prediction model is affected

by additive parameter uncertainties of the form

xunc(k + 1) = (A+ Ã)x(k) + (B + B̃)u(k) , (19)

where the matrices A and B represent the nominal model,

and Ã and B̃ capture parameter uncertainties of the model.

Substituting (19) into ||xunc(k + 1)− xref||2 leads to

||xunc(k + 1)− xref||2 ≤ ||xnom(k + 1)− xref||2 (20)

+ ||Ãx(k) + B̃u(k)||2 ,

where we have introduced xnom(k+1) = Ax(k)+Bu(k). The

deviation from the reference at k + 1 is thus bounded by the

sum of two terms—the nominal response and an uncertainty

term, which is a function of the state vector and the input. On

the uncertainty term we introduce the upper bound

||Ãx(k) + B̃u(k)||2 ≤ p1||x(k)||2 + p2 . (21)

To ensure (robust) convergence to the bound in the presence

of additive parameter uncertainties, the right hand side of (20)

has to be strictly less than ||x(k)− xref||2, i.e.

||xnom(k + 1)− xref||2 + p1||x(k)||2 + p2 < ||x(k)− xref||2 .
(22)

This is equivalent to

ǫi(k + 1) + p1||x(k)||2 + p2 < ǫi(k) (23)
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To ensure robust stability, when the current is outside of

the bound, the constraint on the right hand side in (12c) is

to be replaced by (23). This ensures that only voltage vectors

are selected that point with a certain minimum angle towards

the current reference, i.e. the center of the circular bound. To

ensure robust stability, it suffices to impose (23) only on the

first step in the prediction interval from k to k + 1.

Accordingly, when the current is within its bound, the

constraint on the left hand side in (12c) needs to be modified.

Specifically, the constraint at k+1 is replaced by x(k+1) ∈
X̃ i, where X̃ i uses the radius

δ̃i = δi − p1||x(k)||2 − p2 . (24)

As a result, X̃ i is a subset of X i. This ensures robust

stability once we are within the bounds.

The robustification of MPDCC is visualized in Fig. 4,

which shows three abstract current trajectories versus time for

three different scenarios, with the current initially violating its

dashed (black) bound. Using standard MPDCC with Jbnd = 0
might lead to slow convergence to the bound. Adding Jbnd to

the objective function with γ > 0 enforces switching when

the current is out of its bound and the convergence rate drops.

When using robust MPDCC, a minimum convergence rate is

to be maintained, so as to ensure convergence to the bound

despite parameter uncertainties, see Fig. 4.

To deal with bounded input and measurement noise, similar

techniques can be adopted to establish convergence of con-

verter states, cf., [24].

VII. CONCLUSIONS

This work has shown that MPDCC readily ensures closed-

loop stability by the way the control algorithm has been formu-

lated. In particular, we have established that—through minor

modifications—robust stability in the presence of bounded

uncertainties in converter parameters can be guaranteed.

The stability argument in this paper can be directly ex-

tended to hexagon-shaped bounds and to the other members

of the MPDxC family, notably to MPDTC, MPDPC and

MPDBC. MPDTC, for example, imposes upper and lower

bounds on the electromagnetic torque and the stator flux

magnitude, respectively. Since these bounds can be translated

into equivalent stator currents, a control problem equivalent to

MPDTC can be formulated by imposing bounds on the stator

currents, as shown in [13]. These bounds have, however, a non-

trivial shape. Similar arguments can be made for MPDPC and

MPDBC. Moreover, instead of an active RL load, an induction

machine can be considered, with the stability investigation

focusing on the machine’s stator currents. Similar arguments

can be made for synchronous machines.
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