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Abstract—This paper presents a control algorithm for medium-
voltage (MV) grid-connected converters with LCL filters. The
controller is designed in the framework of model predictive con-
trol (MPC) to successfully address the multiple-input multiple-
output characteristics of the system and provide active damping
such that the apparent switching frequency of the converter
can be equal to the filter resonance frequency. However, op-
eration at such low switching frequencies—in the range of
a few hundred hertz—requires filters with strong harmonic
attenuation capabilities such that the low-order harmonics can
be effectively mitigated. To avoid excessively bulky filters, while
still meeting the relevant harmonic grid standards, optimized
pulse patterns (OPPs) are employed and manipulated in a closed-
loop fashion in real time. In doing so, the designed control
algorithm ensures that low grid current harmonic distortions
are produced, thus achieving excellent system performance. The
effectiveness of the proposed control strategy is verified with
an MV system consisting of a three-level neutral-point-clamped
converter connected to the grid via an LCL filter.

Index Terms—Medium-voltage (MV) converters, grid-
connected power converters, model predictive control (MPC),
optimal control, optimized pulse patterns (OPPs), multiple-input
multiple-output (MIMO) control

I. INTRODUCTION

Medium-voltage (MV) power converters connected to the

grid via LCL filters1 need to be operated such that require-

ments dictated by grid standards—such as limits on the total

demand distortion (TDD) and the harmonics injected into the

point of common coupling (PCC)—are fully respected. To do

so, control algorithms need to successfully fulfill the demand-

ing control objectives. However, as the systems in question

exhibit multiple-input multiple-output (MIMO) characteristics,

the controller design tends to become challenging [1]. This

becomes even more complicated since MV systems need to

be operated at switching frequencies of a few hundred hertz

such that the power losses are kept low.

At such low switching frequencies, however, conventional

control methods tend to be ineffective due to the limited

decoupling of the control loops, thus deteriorating the system

1In practice, when MV applications are concerned, the power converter is
connected to the grid via an LC filter and a (step-down) transformer. As
the transformer has inductive behavior, a filter in LCL configuration can be
considered between the converter and the grid.

performance. Moreover, conventional modulation methods em-

ployed to generate the switching commands, such as carrier-

based pulse width modulation (CB-PWM) or space vector

modulation (SVM), perform poorly at such low switching

frequencies [2], [3]. This is particularly the case when the

ratio between switching and resonance frequency needs to

be low to avoid oversizing of the line LCL filter. For this

reason, conventional controllers—which typically consist of

single-input single-output (SISO) loops arranged in a cascaded

manner—are usually augmented with active damping loops to

avoid excitation of the filter resonance [4], [5]. This, however,

further complicates the controller design and compromises the

dynamic performance of the system.

Considering the above, a control and modulation approach

needs to be able to simultaneously address all the demanding

control objectives of the complex higher-order systems in

question to the greatest possible extent. A strong candidate

for this is model predictive control (MPC) with optimized

pulse patterns (OPPs). Such a solution can take advantage of

the features of MPC, such as its MIMO nature, its ability to

handle explicit constraints, and its high bandwidth that enables

fast transients and excellent disturbance rejection [6], [7], and

combine them with the excellent steady-state performance of

OPPs, as they can produce the theoretical minimum current

distortions [8], [9].

In this direction, the method proposed in [10] for MV

drives—referred to as model predictive pulse pattern con-

trol (MP3C)—employed MPC with OPPs to produce stator

currents with very low harmonic distortions, while achieving

very fast transients. The experimental assessment of MP3C

based on an industrial MV drive clearly demonstrated its

superior performance compared with established industrial

solutions [11]. Extension of this method, however, to address

multiple control objectives and more complex systems is chal-

lenging, while it can be conceptually very complicated [12]–

[14]. On the other hand, the MPC-based method with OPPs

proposed in [15]—referred to as gradient-based predictive

pulse pattern control (GP3C)—has high versatility. This is

due to the fact that the system dynamics are described by the

gradient of the output vector, and the optimization problem un-

derlying GP3C aims at the minimization of the (approximate)



Vdc

2

Vdc

2

N

N
A

B
C

iconv,abc ig,abc

vc,abc

Xfc Xfg Xg

Xc

PCC
∼∼∼

Fig. 1: Three-level NPC converter connected to the grid via an LCL filter.

rms output error. As a result, generalization of the method

to higher-order systems with MIMO characteristics is greatly

facilitated.

Motivated by the above, this work develops a control and

modulation method in the framework of GP3C for MV grid-

connected converters with LCL filters. To this aim, GP3C is

refined to tackle the MIMO nature of the system. More specif-

ically, the output gradient that acts as the prediction model

is computed to account for the evolution of all controlled

variables, namely the grid and converter currents, and filter

capacitor voltage. Moreover, a sufficiently long prediction

horizon, combined with the full state information, provides

active damping, rendering additional damping loops unneces-

sary. As a result, the MV system can be operated at a very

low device switching frequency, and below the filter resonance

frequency, while still producing high-quality currents that meet

the relevant harmonic grid codes. The presented comparison

with conventional linear control with SVM demonstrates the

benefits of the proposed control algorithm.

II. MODEL OF THE GRID-CONNECTED CONVERTER WITH

AN LCL FILTER

Consider the MV system consisting of a three-level neutral-

point-clamped (NPC) converter connected to the grid via an

LCL filter as shown in Fig. 1. To keep the controller analysis

simple, the dc-link voltage Vdc is assumed to be constant,

and the neutral point potential fixed to zero. With these

assumptions, the output converter voltage in phase x, with

x ∈ {a, b, c}, can assume the values −Vdc/2, 0, or Vdc/2, de-

pending on the single-phase switch position ux ∈ {−1, 0, 1}.

As the proposed control problem is designed in the sta-

tionary orthogonal αβ system, any variable in the abc-plane

ξabc = [ξa ξb ξc]
T needs to be mapped into a two-dimensional

vector ξαβ = [ξα ξβ ]
T in the αβ-plane via the transformation

matrix K, i.e., ξαβ =Kξabc, with

K =
2

3

[
1 − 1

2
− 1

2

0
√
3

2
−

√
3

2

]
.

Therefore, the converter voltage in the αβ-plane is given by2

vconv(t) =
Vdc

2
Kuabc(t) , (1)

2Throughout the paper, vectors in the abc-plane are denoted with the
corresponding subscript. On the other hand, the subscript for vectors in the
αβ-plane is omitted.
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Fig. 2: Equivalent circuit of a three-level converter connected to the grid via
an LCL filter in the stationary (αβ) plane.

where uabc = [ua ub uc]
T is the three-phase switch position.

Considering the equivalent circuit representation of the

system in question in the αβ-plane (see Fig. 2), the differential

equations that describe the dynamics of the system are

diconv

dt
=

1

Xfc

(
vc − (Rfc +Rc)iconv +Rcig − vconv

)
, (2a)

dig

dt
=

1

Xgr

(
vg − (Rgr +Rc)ig + Rciconv − vc

)
, (2b)

dvc

dt
=

1

Xc

(ig − iconv) , (2c)

dvg

dt
= ωg

[
0 −1

1 0

]
vg , (2d)

where the variables of interest are the converter current iconv,

grid current ig , capacitor voltage vc, and grid voltage vg.

The parameters in (2) are the converter-side filter reactance

Xfc and resistance Rfc, the grid-side equivalent reactance

and resistance, Xgr = Xfg + Xg and Rgr = Rfg + Rg,

respectively—where Xfg (Rfg) and Xg (Rg) are the grid-

side filter and grid reactance (resistance), respectively—as well

as the reactance Xc and internal resistance Rc of the filter

capacitor. Finally, ωg is the angular grid frequency. Note that

the system is modeled in per unit (p.u.), thus all SI variables

are normalized based on the rated values of the system.

Let the three-phase switch position be the system in-

put, the converter current, grid current, filter capacitor volt-

age, and grid voltage comprise the system state, i.e., x =
[iTconv i

T
g vTc vTg ]

T ∈ R
8, and the converter current, grid

current, and filter capacitor voltage be the system output,

i.e., y = [iTconv i
T
g vTc ]

T ∈ R
6. With the help of (2), the

continuous-time state-space model of the system is of the form

dx(t)

dt
= Fx(t) +Guabc(t) (3a)

y(t) = Cx(t) , (3b)



where the system F ∈ R
8×8, input G ∈ R

8×3, and output

C ∈ R
6×8 matrices are provided in Appendix A.

Finally, as MPC is developed in the discrete-time do-

main, (3) is discretized with the sampling interval Ts. This

yields

x(k + 1) = Ax(k) +Buabc(k) (4a)

y(k) = Cx(k) , (4b)

where k ∈ N
+ denotes the discrete time step. Note that the

matrices A and B in (4) are derived by using forward Euler

discretization.

III. GP3C AS A MIMO CONTROLLER

The discussed control algorithm, i.e., GP3C, is based on two

pillars, namely OPPs [8], [9], and gradient-based MPC [16],

[17]. The former ensures the best possible steady-state per-

formance in terms of grid current distortions, while the high

versatility of the latter enables the design of a simple yet

effective MIMO control approach. These aspects are presented

in more detail in the sequel of this section.

A. OPPs for Higher-Order Systems

OPPs are computed in an offline procedure by solving

an optimization problem that aims to minimize the current

distortions of the load current. In doing so, the lowest possible

harmonic current results for a given pulse number d, i.e., ratio

of switching-to-fundamental frequency. This problem is solved

for several modulation indices to cover the whole range of

operating points. Moreover, quarter- and half-wave symmetry

is imposed on the pulse patterns, while three-phase symmetry

is assumed. This means that for a given modulation index

m ∈ [0, π/4], and considering a specific sequence of switch

positions, it suffices to compute the instants—referred to as

switching angles—where a switching event occurs within the

first quarter of the fundamental period. Hence, the result of

the optimization procedure is a set of d switching angles in

the range [0, 90o] that fully define the OPP p(d,m).
Nevertheless, OPPs are typically computed by assuming

an inductive load. As a result, when used with higher-order

systems, such as the system in question (see Fig. 1), their

benefits can be compromised. For this reason, the OPPs in

this work are computed to account for the LCL filter by

considering the transfer function from the switching function

harmonics to the grid current harmonics [18], see Fig. 3. In

doing so, the OPPs produce grid currents that not only have the

lowest possible TDD, but also meet harmonic grid standards,

such as the IEEE 519 [19], even at very low pulse numbers.

B. Control Problem

The proposed MIMO control strategy is designed in the

αβ-plane. It aims at regulating the output vector y along its

reference trajectory yref. To do so, the switching instants of the

nominal OPP are manipulated in real time such that favorable

performance is achieved. More specifically, the controller

manipulates the z ∈ N
+ switching time instants of the nominal

OPP that fall within a time window Tp such that the rms error

Modulation index m
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(a) Optimal switching angles for d = 5. The (black) circles indicate the
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(b) Single-phase OPP u(θ) at m = 1.085 and d = 5, i.e., p(5, 1.085).

Fig. 3: Optimization results of a three-level OPP problem that considers the
transfer function from the switching function harmonics to the grid current
harmonics. The pulse number is d = 5 and quarter and half-wave symmetry
is imposed on the OPP.

of all output variables is minimized. This time window can

be interpreted as the prediction horizon, and it is an integer

multiple of the sampling interval Ts, i.e., Tp = NpTs, where

Np denotes the number of prediction horizon steps.

To devise the controller based on the above description, let

t =
[
t1 t2 . . . tz

]T
∈ R

z

be the vector of the (to-be-computed) modified switching time

instants that fall within Tp, and

tref =
[
t1,ref t2,ref . . . tz,ref

]T
∈ R

z

the vector of the corresponding nominal OPP switching time

instants. The aforementioned control objectives can be math-

ematically described with an objective function of the form

J =

z∑

i=1

‖yref(ti,ref)− y(ti)‖
2
Q + λt‖∆t‖

2
2 , (5)

where the first term relates to the output trajectory tracking

problem as it accounts for the weighted (squared) rms error

of the system output. Note that, as shown in [16], this term

is a simplification of a continuous-time integration of the

output error over Tp. According to Parseval’s theorem, such

an integral captures the harmonic energy of the output error.

Hence, minimizing (5) is equivalent to minimizing the TDD

of the output variables. Moreover, as can be seen, the output



error is weighted by the diagonal entries of the positive definite

matrix Q = diag(I2qiconv
, I2qig , I2qvc) ∈ R

6×6. Thus, these

entries penalize the deviation of the output variables from

their respective reference trajectories, where the weighting

factors qiconv
, qvc , qig > 0 set the priority among the tracking

of the trajectories of the different output variables, and I2 is

the two-dimensional identity matrix. As for the second term

in (5), it models the deviation of the to-be-computed switching

time instants from their nominal values, i.e., ∆t = tref − t.
Therefore, this term enables the manipulation of the changes in

the nominal switching time instants of the (offline-computed)

OPP by means of the weighting factor λt > 0.

According to (5), the evolution of the output y needs to

be computed within the subintervals of the prediction horizon

[0, t1,ref), [t1,ref, t2,ref), [t2,ref, t3,ref), . . . , and [tz,ref, Tp). This

can be done with the help of (4) and the (known) sequence of

OPP switch positions within Tp

U =
[
uT
abc(t0) uT

abc(t1,ref) . . . uT
abc(tz,ref)

]T
. (6)

By considering, however, that the interval between two con-

secutive OPP switching time instants is relatively small, i.e.,

ti+1,ref − ti,ref ≪ T1, ∀i ∈ {1, . . . , 4d− 1} ,

where T1 is the fundamental period, the prediction task can

be significantly simplified. Specifically, the output trajectory

within the subintervals of the prediction horizon can be

provided by the corresponding gradients, i.e.,

m(tℓ,ref) =
dy(tℓ,ref)

dt
≈
y(tℓ+1,ref)− y(tℓ,ref)

∆tℓ,ref

= C
x(tℓ+1,ref)− x(tℓ,ref)

∆tℓ,ref

,

(7)

where

∆tℓ,ref = tℓ+1,ref − tℓ,ref ,

ℓ ∈ {0, 1, . . . , z − 1}, and t0,ref ≡ t0 ≡ kTs. Note that in (7),

the discrete-time state-space model (4) is revised to

x(tℓ+1,ref) = Ax(tℓ,ref) +Buabc(tℓ,ref) (8a)

y(tℓ,ref) = Cx(tℓ,ref) , (8b)

and the system matrices are discretized with ∆tℓ,ref. Thus, ex-

pression (7) equips the controller with great design versatility,

as the gradient vectors can be easily computed regardless of

whether the system is linear or nonlinear [20], simple (e.g.,

first-order system), or complex (e.g., higher-order system). The

evolution of the trajectory of one arbitrary output variable is

visualized in Fig. 4.

With the prediction model (7), and after some algebraic

manipulations that are provided in Appendix B, function (5)

can be written as

J = ‖r −Mt‖2
Q̃
+ λt‖∆t‖

2
2 , (9)

where r is a vector that depends on the reference values and

measurements of the output, andM is a matrix whose nonzero

entries depend on the gradients with which the controlled (i.e.,

Ts

past prediction horizon Tp
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OPP
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Fig. 4: Example of the evolution of one (arbitrary) controlled variable (e.g.,
the α-component of the grid current) within a four-step (Tp = 4Ts) prediction
horizon when applying the depicted pulse pattern. Top part: The modifications
on the offline-computed, nominal OPP, as introduced by the controller, are
shown with arrows, while the modified volt-second area is also highlighted.
Bottom part: The (linearized) trajectory of the controlled variable when
applying the nominal OPP is shown with the dash-dotted (magenta) line,
while its (linearized) trajectory when applying the modified pulse pattern is
shown with the solid (green) line. The dashed (black) line shows the reference
sampled at the nominal OPP time instants.

output) variables evolve over the prediction horizon Tp. The

detailed form of r and M is presented in Appendix B. It

is noteworthy that the dimensions of r and M change with

time as they depend on the number of the OPP switching

time instants that fall within the horizon, i.e., r ∈ R
6z and

M ∈ R
6z×z . Finally, matrix Q̃ is block diagonal and it is

given by Q̃ = diag(Q, . . . ,Q) ∈ R
6z×6z .

C. Control Algorithm

The block diagram of the proposed control algorithm is

presented in Fig. 5. In the sequel of this section the depicted

individual blocks discussed.

1) Outer Control Loop: In a first step, the desired values

of the controlled variables are derived. A dc-link voltage

controller is employed to control the dc-link voltage Vdc by

manipulating the active power reference Pref. The reactive

power reference value Qref is set by considering the desired

power factor, which is typically set equal to one. With Pref

and Qref, and a given grid angular frequency ωg, the operating

point is defined. Following, as per [6, Chapter 6.3], the (time-

varying) output reference values can be computed at steady-

state operating conditions by performing a vector analysis in

a rotating (dq) reference plane that is aligned with the grid
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Fig. 5: Block diagram of the GP3C scheme.

Algorithm 1 GP3C for higher-order systems

Given uabc(t
−

0
), yref(t0), x(t0), and p(d,m)

0. Extract the switching time instants and switch positions from p(d,m)
to formulate tref and U .

1. Generate the output reference trajectory Y ref within the horizon Tp

to formulate the vector r.

2. Formulate the matrix M by computing the gradient vectors m(tℓ,ref),
ℓ ∈ {0, 1, . . . , z − 1}.

3. Solve the constrained QP (12). This yields t∗.

Return t∗(k) that fall within Tp and modify the OPP accordingly.

voltage vg (or grid virtual flux ψg). For a more detailed

derivation of the reference values, the reader is referred to [21].

2) Pattern Loader: From the aforementioned steady-state

analysis, the converter voltage vconv required to achieve the

desired reference tracking is also derived. Hence, the modu-

lation index m is chosen as

m =
2

Vdc

‖vconv‖2 . (10)

As for the pulse number d, this is decided by considering that

the device switching frequency fsw of MV converters should

be low, typically below a maximum value fsw,max. At the same

time, however, fsw needs to be as high as possible such that

the produced current distortions are kept low. Given that for a

three-level inverter the device switching frequency is given by

fsw = d f1, where f1 is the fundamental frequency, the pulse

number d is selected as the largest integer that is less than the

ratio fsw,max/f1, i.e.,

d =

⌊
fsw,max

f1

⌋
= floor

(
fsw,max

f1

)
, (11)

see also [6, Chapter 12.4].

Following, the pair {m, d} is fed into a look-up-table (LUT)

to retrieve the desired nominal OPP p(d,m). This OPP is

subsequently sent to the inner, GP3C-based controller.

TABLE I: Rated values of the system

Parameter Symbol SI Value

Voltage VR 3.15 kV

Current IR 1.65 kA

Power PR 9MVA

Angular grid frequency ωgR 2π50 rad/s

TABLE II: System parameters

Grid Reactance Xg 0.0995

Resistance Rg 0.0071

LCL filter Grid-side reactance Xfg 0.1500

Grid-side resistance Rfg 0.0150

Converter-side reactance Xfc 0.0997

Converter-side resistance Rfc 0.0003

Capacitance reactance Xc 0.1455

Capacitance resistance Rc 0.0036

Converter Dc-link Vdc 1.8818

3) GP3C: With the info about the OPP p(d,m), the switch-

ing time instants that fall within Tp are retrieved along with

the corresponding nominal OPP switch positions. In a next

step, the output gradient matrix M is computed based on

the retrieved nominal OPP switch positions U (see (6)) and

the system dynamics (8). Similarly, the reference vector r is

derived based on the output reference vector yref within the

horizon. Note that the values of yref used in the prediction

horizon result by sampling the corresponding (sinusoidal)

waveforms of the reference quantities at the nominal OPP time

instants, giving rise to the reference vector

Y ref(k) =
[
yTref(t1,ref) yTref(t2,ref) . . . yTref(tz,ref)

]T
,

see also Appendix B.

Subsequently, the following optimization problem underly-

ing GP3C is formulated based on (9)

minimize
t∈Rz

‖r −Mt‖2
Q̃

subject to kTs < t1 < t2 < . . . < kTs + Tp .
(12)

This problem is solved to find the optimal modified switching

instants t∗ = [t∗1 t∗2 . . . t∗z]
T .

Finally, in line with the receding horizon policy, only

these OPP switch positions uabc that fall within the first

sampling interval Ts of Tp are applied to the converter at

the corresponding time instants t∗, while the switch positions

and time instant modifications within the interval Tp − Ts

are discarded. In the next iteration, the whole procedure is

repeated from the beginning based on new measurements.

The structure of the proposed GP3C scheme is summarized

in Algorithm 1. It is worth mentioning that even though GP3C

is formulated as a MIMO controller in this work, its core

routines remain the same. Moreover, and more importantly,

as can be deduced from (12), regardless of the increased

number of controlled variables, GP3C is still formulated as

a constrained quadratic program (QP). This enables the use

of tailored solvers that exploit the geometry of the said
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Fig. 6: Frequency response of the LCL filter.

QP, see [22]. Consequently, as shown in [23], the real-time

implementation of the control scheme is rendered possible.

IV. PERFORMANCE EVALUATION

The simulation results presented in this section are ob-

tained for the MV system shown in Fig. 1. The rated values

and parameters of the system in question are provided in

Tables I and II, respectively. As can be deduced from the

filter parameters in Table II, the resonance frequency is at

fres = 491Hz, see also Fig. 6. As for the controller parameters,

the sampling interval is Ts = 50µs and Np = 10, implying

a prediction horizon of Tp = 500µs. The weighting factors

are Q = diag(1, 1, 5, 5, 20, 20) to prioritize the grid current

reference tracking, and λt = 5 · 106. A three-level OPP with

a pulse number d = 5 is used such that the device switching

frequency is fsw = 250Hz, i.e., well below fres,
3 and the

modulation index is m = 1.085, see Fig. 3(b). Finally, all

results are shown in the p.u. system.

In the following, the steady-state performance of the pro-

posed MIMO control approach at nominal operating condi-

tions (Pref = 1 and Qref = 0) is illustrated and discussed.

The relevant results are shown in Fig. 7. As can be seen

in Fig. 7(a), the active and reactive power references are

successfully tracked. This is achieved due to the effective

operation of the inner, MPC-based loop, as the proposed GP3C

scheme simultaneously regulates all three controlled variables,

i.e., the converter current, filter capacitor voltage, and grid

current along their references, see Figs. 7(b), 7(c), and 7(d),

respectively. With regards to the latter, owing to the minute

3This implies that the apparent switching frequency of the converter is
almost the same as the filter resonance frequency.

modifications of the OPP (Fig. 7(f)), the grid current TDD is

only 1.77%, i.e., very close to its ideal value of 1.57%, and

the current harmonics are located at odd, non-triplen integer

multiples of f1, see Fig. 7(e). As a result, harmonic grid

standards, such as the IEEE 519, are fully met.

On the other hand, when comparing the harmonic spectrum

of the grid current produced by conventional linear control

with SVM, it is evident that the performance is not that

favorable, see Fig. 8. Specifically, as can be seen in that figure,

the amplitude of the low-frequency harmonics is very high,

giving rise to a current TDD of 6.55%, i.e., almost four times

greater than that of GP3C.

Finally, it should be pointed out that the superior steady-

state performance of GP3C is achieved without the presence

of an additional active damping loop as this is inherent to

the proposed control algorithm. Consequently, the converter

apparent switching frequency is almost equal to the filter

resonance frequency, implying full utilization of the available

hardware, and thus reduced cost of the system.

V. CONCLUSION

This paper refined the GP3C algorithm introduced in [15]

to address the MIMO characteristics of a system consisting

of an MV converter connected to the grid via an LCL
filter. As shown, the controller exhibits superior performance

during steady state, i.e., minimal grid current TDD for a

given switching frequency, while operating the system at very

low switching frequency (with apparent switching frequency

almost equal to the filter resonance frequency) to achieve

increased system efficiency and full utilization of the available

hardware. This favorable performance is attributed to the ef-

fective combination of gradient-based MPC and OPPs. Owing

to the former, the adopted versatile prediction model—which

relies on the output gradients—enables the full exploitation

of the MIMO control nature of MPC. As for the OPPs, they

ensure the lowest possible harmonic distortions, especially at

very low pulse numbers. Notably, despite the complexity of the

control problem in question, the developed control algorithm

is characterized by design and conceptual simplicity. These

features, along with the fact that the controller is formulated as

a QP, facilitate the real-time implementation of the discussed

MIMO control strategy.

APPENDIX A

STATE-SPACE MODEL MATRICES

The matrices of the continuous-time state-space model in (3)

are

F =




−
Rfc+Rc

Xfc
I2

Rc

Xfc
I2

1

Xfc
I2 02×2

Rc

Xgr
I2 −

Rgr+Rc

Xgr
I2 − 1

Xgr
I2

1

Xgr
I2

− 1

Xc
I2

1

Xc
I2 02×2 02×2

02×2 02×2 02×2 ωg

[
0 −1

1 0

]




G = −
Vdc

2Xfc

[
I2 02×6

]T
K, and C =

[
I6 06×2

]
,
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(a) Active P (magenta) and reactive power Q
(green) and their references (dash-dotted line).
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(b) Three-phase converter currents iconv,abc (solid
lines) and their references (dash-dotted lines).
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(c) Three-phase capacitor voltages vc,abc (solid
lines) and their references (dash-dotted lines).
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(d) Three-phase grid currents ig,abc (solid lines)
and their references (dash-dotted lines).
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(e) Grid current spectrum. The TDD is 1.77%.
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(f) Three-phase (modified) switching pattern uabc

(solid lines) and nominal OPP (dash-dotted lines).

Fig. 7: Simulation results of the proposed GP3C during steady-state operation and unity power factor (fsw = 250 Hz).
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Fig. 8: Grid current harmonic spectrum produced by linear control and SVM.
The TDD is 6.55%.

where I and 0 are the identity and zero matrices, respectively,

the dimensions of which are denoted by the corresponding

subscripts.

APPENDIX B

DERIVATION OF THE OBJECTIVE FUNCTION IN VECTOR

FORM

The first term of the objective function (5) can be written

as

J1 = ‖yref(t1,ref)− y(t1)‖
2
Q + ‖yref(t2,ref)− y(t2)‖

2
Q

+ . . .+ ‖yref(tz,ref)− y(tz)‖
2
Q ,

(13)

where yref(tℓ,ref), ℓ ∈ {1, 2, . . . , z}, is the vector of reference

values sampled as the nominal OPP time instants tℓ,ref and

y(t1) = y(t0) +m(t0,ref) t1 ,

y(t2) = y(t1) +m(t1,ref) (t2 − t1)

= y(t0) +m0 t1 +m(t1,ref) t2 ,

...

y(tz) = y(tz−1) +m(tz−1,ref) (tz − tz−1)

= y(t0) +m0 t1 + . . .+mz−2 tz−1 +m(tz−1,ref) tz ,

with mℓ = m(tℓ,ref) −m(tℓ+1,ref) for ℓ ∈ {0, 1, . . . , z − 2}.

Thus, with the above, function (13) can be written in the

following vector form, as presented in (9), i.e.,

J1 =
∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥




yerr(t1,ref)

yerr(t2,ref)
...

yerr(tz,ref)




︸ ︷︷ ︸
r

−




mt0 06 · · · 06 06

m0 mt1 · · · 06 06

...
...

. . .
...

...

m0 m1 · · · mtz−2
06

m0 m1 · · · mz−2 mtz−1




︸ ︷︷ ︸
M




t1

t2
...

tz




︸ ︷︷ ︸
t

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

Q̃

,

where yerr(tℓ,ref) = yref(tℓ,ref) − y(t0), ℓ ∈ {1, 2, . . . , z}, and

mtℓ =m(tℓ,ref), ℓ ∈ {1, 2, . . . , z − 1}.
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