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Abstract—This paper presents the computation of three-level
optimized pulse patterns (OPPs) for converters connected to the
grid via LCL filters. To meet the relevant harmonic grid codes,
the OPP optimization problem considers the transfer function
from the switching function harmonics to the grid current
harmonics, while respecting the constraints that relate to the
current harmonic limits. Moreover, the proposed problem relaxes
the restrictions that are traditionally imposed on the switching
signals, i.e., the quarter-wave symmetry and unipolar switch
positions. In doing so, the current distortions are less than those
of the conventional constrained OPPs, while they are occasionally
even lower than those of the OPPs without constraints on the
current harmonics. The presented numerical results demonstrate
the superior harmonic performance of the computed OPPs
compared with conventional modulation techniques, such as
space vector modulation (SVM).

Index Terms—Grid-connected converters, grid standards, har-
monic distortions, optimized pulse patterns (OPPs), selective
harmonic mitigation (SHM), pulse width modulation (PWM).

I. INTRODUCTION

Power electronic systems with power ratings of 1MVA and

above, such as medium-voltage (MV) converters, need to be

operated at very low switching frequencies (well below 1 kHz)

to keep the switching losses low. Conventional modulation

methods, such as carrier-based pulse width modulation (CB-

PWM) or space vector modulation (SVM), however, do not

perform well at low pulse numbers, i.e., at a low ratio

of switching-to-fundamental frequency [1]. To achieve high-

quality converter outputs at low pulse numbers, programmed

PWM schemes, such as selective harmonic elimination (SHE)

and optimized pulse patterns (OPPs), can be employed in-

stead [2], [3], in which the switching patterns are calculated in

an offline procedure. Specifically, SHE computes the switching

angles (i.e., switching time instants) of the switching patterns

by solving a system of nonlinear equations such that specific

harmonics are eliminated. As for the switching angles of the

OPPs, these are computed by solving an optimization problem

that accounts for the output current total demand distortion

(TDD) in its objective function.

Despite the above-mentioned advantage of SHE and OPP

techniques, when grid-connected converters are of interest,

both methods do not fully achieve the desired performance.

This is due to the fact that the output current of such converters

need to comply with relevant harmonic grid codes, such as

the IEEE 519 standard [4], which impose stringent limits

on current harmonics and the TDD at the point of common

coupling (PCC). Since these codes are meant to prevent the

grid customers from harming each other, they are of great

importance. To act in accordance with grid standards and

reduce the harmonics injected to the grid, the power converters

are typically connected to the grid through harmonic filters,

most commonly LCL filters. Such filters, however, even

though they attenuate the high-order harmonics, are not that

effective with low-order harmonics, implying that respecting

the grid standards is not trivial.

To address—at least partly—this challenge and abide by

the grid codes, SHE can be modified to mitigate the effect of

noneliminated harmonics. To this aim, the so-called selective

harmonic mitigation (SHM) methods suggested in [5] and [6]

for grid-connected converters adjust the dc-link voltage, i.e.,

the modulation index. In doing so, however, these techniques

drastically limit the operational range of the converter. In [7]

and [8], the proposed SHM methods compute the switching

angles by minimizing the difference between selected har-

monic amplitudes and their maximum allowed levels imposed

by the harmonic grid standards. This strategy improves the

harmonic performance of the grid current, but alas, it requires

a high number of pulses to meet the harmonic grid codes.

This renders this approach unsuitable for MV applications.

Moreover, the grid current TDD, although below the value

required by the harmonic grid codes, remains relatively high,

especially at higher modulation indices.

In contrast to the SHE/SHM techniques employed in the

aforementioned works, OPPs show better harmonic perfor-

mance as they are computed such that entire harmonic content

of the switching signal is minimized [9]. However, OPPs,

similarly to SHE/SHM methods, are computed for first-order

systems—typically by assuming an inductive load—thus their

benefits can be compromised when used with higher-order

systems, such as converters with LCL filters.1 When OPPs,

however, are tailored to higher-order systems, then they can

produce the lowest possible grid current TDD at low switching

frequencies, as shown in [10]. Nevertheless, the OPPs in

1In practice, for MV applications, the three-level converter is connected
to the grid via an LC filter and a transformer, giving rise to an LCL
configuration.
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Fig. 1. Graphical representation of the three-level NPC converter connected to the grid via an LCL filter.

that work do not guarantee that specific harmonic limits

are fulfilled as only the current TDD is considered in the

optimization process.

Motivated by the above, this paper proposes a method

to compute three-level OPPs for grid-connected converters

with LCL filter that meet the relevant grid standards. To do

so, the OPP optimization problem is reformulated by taking

the transfer function from the switching function to the grid

current into account. Furthermore, additional constraints are

included in the optimization problem to ensure that the current

harmonics that would otherwise violate their limits are kept

below them. In addition, to mitigate the expected increase

in the current TDD resulting from the harmonic limitations,

the restrictions that are typically imposed on the symmetry

and polarity of the switch positions are relaxed to increase

the solution search space. As demonstrated by the numerical

results, the computed constrained OPPs with relaxed properties

produce currents that comply with the harmonic grid codes.

Moreover, the presented OPPs not only exhibit significantly

better harmonic performance compared with conventional

modulation methods, such as space vector modulation (SVM),

but also achieve current TDDs that can occasionally be even

lower than those of the unconstrained conventional OPPs.

II. OPPS FOR GRID-CONNECTED CONVERTERS WITH

LCL FILTERS

The computation of OPPs is done for an MV power elec-

tronic system consisting of a three-level neutral-point-clamped

(NPC) voltage-source converter that is connected to the grid

via an LCL filter, see Fig. 1. In the sequel of this section, the

model of this system used in the OPP optimization problem

as well as the subsequent computation of OPPs—without and

with relaxed symmetry and polarity properties—that meet the

harmonic grid standards are presented.

A. Modeling of the Grid-Connected Converter System

Consider the (reduced) Clarke transformation ξαβ = Kξabc
that maps quantities ξabc = [ξa ξb ξc]

T
from the three-phase

(abc) plane to quantities ξαβ = [ξα ξβ ]
T

in the stationary,

orthogonal (αβ) plane via the matrix

K =
2

3

[

1 − 1
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0
√
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Fig. 2. Equivalent circuit of the converter system in the αβ-plane

The differential equations that characterize the system under

consideration can be derived by applying circuit analysis to the

equivalent circuit of the system in the αβ plane, see Fig. 2.

This yields [11]2

Lf
diconv(t)

dt
=−R1iconv(t)+Rcig(t)−vc(t)+vconv(t) , (1a)

Lgt
dig(t)

dt
=Rciconv(t)−R2ig(t)+vc(t)−vg(t) , (1b)

dvc(t)

dt
=

1

C
iconv(t)−

1

C
ig(t) , (1c)

dvg(t)

dt
=

[
o −ωg

ωg 0

]

vg(t) , (1d)

where the converter voltage is obtained through

vconv(t) =
Vdc

2
Kuabc(t) , (2)

with Vdc being the dc-link voltage of the converter, and uabc =
[ua ub uc]

T ∈ {−1, 0, 1}3 the three-phase switch position.

Moreover, the system parameters shown in (1) comprise the

lumped inductance Lgt = Lg + Lt, which combines the

inductances of the grid Lg and transformer Lt. In addition,

R1 = Rf + Rc comprises the series resistances of the

filter inductance Lf and capacitance C, respectively, while

the resistances of the grid and transformer, i.e., Rg and Rt,

respectively, are considered in R2 = Rc + Rg + Rt. Finally,

ωg is the angular frequency of the grid.

To describe the dynamics of the grid-connected con-

verter system, the state vector x is chosen to comprise

the converter current iconv,αβ , grid current ig,αβ , capac-

itor voltage vc,αβ , and grid voltage vg,αβ , i.e., x =
[iTconv,αβ iTg,αβ vT

c,αβ vT
g,αβ ]

T ∈ R
8. Moreover, by defining the

three-phase switch position uabc as the input to the system,

2Note that in (1), the αβ subscript is dropped from the respective variables
for convenience, whereas abc variables have their subscript explicitly stated.



and choosing the grid current as the system output, i.e.,

y = ig,αβ ∈ R
2, the state-space model of the system can

be obtained from (1) as follows

dx(t)

dt
= Ax(t) +Buabc(t) ,

y(t) = Cx(t) ,
(3)

with the state-space matrices

A =









−R1

Lf
I2

Rc

Lf
I2 − 1

Lf
I2 02

Rc

Lgt
I2 − R2

Lgt
I2

1
Lgt

I2 − 1
Lgt

I2
1
C I2 − 1

C I2 02 02

02 02 02

[
0 −ωg

ωg 0

]









,

B =
Vdc

2Lf







I2

02

02

02






K, C =

[
02 I2 02 02

]
.

Here, I2 and 02 denote the identity and zero matrices of

dimension two, respectively.

With (3), the transfer matrix from the system input (the

converter switch position uabc) to the system output (the

grid current ig,αβ), i.e., H(s) = L{ig,αβ}(s)/L{uabc}(s),
is derived. This matrix is employed to map the effect of the

applied pulse pattern on the grid current, as shown in the next

section.

B. Three-Level OPPs Considering the LCL Filter

Assuming three-phase symmetry, it suffices to compute

offline the three-level switching signal ua ≡ u(θ) for phase

a, as ub and uc can be obtained by phase-shifting ua by

−2π/3 and 2π/3, respectively. In addition, it is common

practice to impose quarter- and half-wave symmetry (QaHWS)

on the 2π-periodic signal u(θ), i.e., u(π − θ) = u(θ) and

u(π + θ) = −u(θ), respectively. Furthermore, only non-

negative switch positions are typically considered in the pos-

itive half-wave of the fundamental period. As a result, the

switching signal can be fully characterized by d switching

angles αi ∈ [0, π/2], i ∈ {1, . . . , d}, and d + 1 switch

positions ui ∈ {0, 1}, i ∈ {0, . . . , d}, in the first quarter of the

fundamental period, while the initial switch position u0 is zero.

The pulse number d represents the number of switching tran-

sitions ∆ui = ui − ui−1 ∈ {−1, 1} in the QaHWS switched

waveform within [0, π/2]. Note that switching by more than

one level up or down is prohibited for multilevel converters

owing to the risk of a short circuit [12]. Moreover, for QaHWS

OPPs with unipolar switch positions, the switching transitions

become ∆ui = (−1)i+1, i ∈ {1, . . . , d}.

Given the above, the periodic switching signal u(θ) can be

represented by the following Fourier series expansion [13]

u(θ) =
∑

n=1,3,5,7,...

(an cos(nθ) + bn sin(nθ))

=
∑

n=1,3,5,7,...

bn sin(nθ) ,
(5)

with

bn = ûn =
4

nπ

d∑

i=1

∆ui cos(nαi) ,

where ûn denotes the amplitude of the nth harmonic of the

single-phase pulse pattern. Therefore, the amplitude of the

corresponding voltage harmonic is v̂n = (Vdc/2) ûn. Note

that due to the half-wave symmetry (HWS) of u(θ) only

odd harmonics appear in (5). Moreover, QaHWS implies that

the only the bn Fourier coefficients are considered, while all

the an coefficients are zero. For details on the derivation of

the Fourier coefficients when imposing different symmetry

conditions, the interested reader is referred to [13].

The harmonic components of the switched converter voltage

cause current harmonic distortions which adversely affect the

load. To quantify the quality of the current, its TDD is adopted

as a relevant performance metric, i.e.,

ITDD =
1√
2Inom

√
∑

n6=1

î2n , (6)

where Inom is the rms value of the nominal current, and în
the amplitude of the nth harmonic of the current of interest.

Focusing on the grid current, the amplitude of its nth harmonic

îg,n is related to the amplitude of the nth harmonic of the

switched waveform ûn through the gain gn that can be

computed by replacing s with nω1 in the transfer matrix H(s)
obtained from (3) (see Section II-A), where ω1 is the angular

fundamental frequency. Therefore, the grid current TDD is

ITDD =

√
2Vdc

πInom
︸ ︷︷ ︸

c

√
√
√
√
√

∑

n=5,7,...

(

gn
n

d∑

i=1

∆ui cos(nαi)

)2

. (7)

Note that the triplen current harmonics are not considered

in (7) since the triplen voltage harmonics (n = 3, 9, 15, . . .) do

not drive harmonic current in a balanced three-phase system.

The current TDD in (7) can be interpreted as ITDD = c
√
J

in which the constant c depends only on the system parame-

ters. By discarding the constant—and thus irrelevant—scaling

factor c, the OPPs that produce the minimum grid current

ITDD, while accounting for the LCL filter, can be computed

by minimizing J , which is chosen as the objective function

of the proposed OPP optimization problem. To this end, the

following nonconvex optimization problem is solved over the

whole range of modulation indices m ∈ [0, 4/π]

minimize
αQ=[α1 ... αd]T

∑

n=5,7,...

(

gn
n

d∑

i=1

∆ui cos(nαi)

)2

(8a)

subject to b1 =
4

π

d∑

i=1

∆ui cos(αi) = m (8b)

0 ≤ α1 ≤ α2 ≤ . . . ≤ αd ≤ π

2
(8c)

∆ui = (−1)i+1 ∀i ∈ {1, . . . , d}. (8d)



Note that the switching angles αi in the first quarter of the

fundamental period are the only optimization variables when

QaHWS and unipolar switch positions are considered. In (8),

constraint (8b) ensures that the desired modulation index m
is synthesized, while the d + 1 inequality constraints (8c)

guarantee that the switching angles are in ascending order.

It is important to stress that owing to the inclusion of the

gain gn in the objective function (8a), problem (8) enables

the computation of OPPs for higher-order systems, such as

the one considered in this work (see Fig. 1). This is in stark

contrast to the conventional formulation of the OPP problem,

where the objective function is suitable only for the first-order

systems since an inductive load is typically assumed [13].

C. Constrained OPPs that Meet the Harmonic Grid Standards

Even though the OPPs computed by solving (8) produce the

minimum grid current TDD, they do not ensure that individual

current harmonics do not exceed the limits imposed by the

relevant grid standards. To address this, the OPP optimization

problem (8) is modified by adding constraints of the form

ûn ≤ 1

gn

2

Vdc

în,max (9)

so that the current harmonics are limited to their desired levels.

Constraint (9) maps the limit on the amplitude of the nth

current harmonic în,max, as dictated by the grid standards [4],

to the switching signal harmonic via the gain gn. Hence, by

solving problem (8) when augmented with constraint (9), the

aim is to achieve the lowest possible grid current TDD while

meeting the harmonic limits imposed by the grid standards as

well as possible. To this aim, the constraints (9) are imposed

on the low-order non-triplen odd harmonics (e.g., up to the 25th

harmonic), as harmonics at higher frequencies are effectively

attenuated by the filter. It should be pointed out, however, that

due to fact that the harmonic constraints are implemented as

hard constraints, the feasibility of the constrained OPP prob-

lem is not guaranteed, as also discussed in Section III. This

issue can be overcome by, e.g., employing soft constraints,

albeit at the expense of small constraint violations.

D. Relaxed OPP Optimization Problem for Grid-Connected

Converters

As recently shown in [13], relaxing symmetry and switching

restrictions increases the search space of the three-level OPP

optimization problem. In other words, the degrees of freedom

in the computation process are higher due to the increased

domain of the switching angles as well as the additional

feasible switching sequences. With regards to the former, by

dropping the quarter-wave symmetry, only HWS OPPs are

considered, meaning that 2d switching angles αi ∈ [0, π], i ∈
{1, . . . , 2d}, need to be computed in one half-wave of the

fundamental period, as opposed to the d switching angles

calculated for QaHWS OPPs. Moreover, considering both

positive and negative switch positions in the positive half-wave

of the fundamental period and not having strictly u0 = 0, i.e.,

allowing multipolar switch positions, give rise to more than

one candidate pulse pattern, i.e., 2d+1 − 2 feasible switching

sequences [13]. Hence, when the OPP optimization problem

is solved considering HWS and multipolar switch positions,

not only 2d switching angles need to be computed, but also 2d
switch positions ui ∈ {−1, 0, 1}, i ∈ {0, . . . , 2d−1}. Note that

owing to the imposed HWS the final switch position should

be u2d = −u0.

Considering HWS, both Fourier coefficients an and bn are

nonzero for the odd harmonics. Thus, the HWS pulse patterns

can be represented as follows [13]

u(θ) =
∑

n=1,3,5,7,...

(an cos(nθ) + bn sin(nθ)) , (10)

with

an = − 2

nπ

2d∑

i=1

∆ui sin(nαi) ,

bn =
2

nπ

2d∑

i=1

∆ui cos(nαi) ,

and ûn =
√

a2n + b2n being the amplitude of the nth harmonic

of the switching signal.

With the above, and by following the analysis presented in

Section II-B, the current TDD resulting from HWS OPPs is

given by

ITDD =
Vdc√
2πInom

︸ ︷︷ ︸

c

(
∑

n=5,7,...

(gn
n

)2
((

2d∑

i=1

∆ui sin(nαi)

)2

+

(
2d∑

i=1

∆ui cos(nαi)

)2))1/2

.

(11)

Considering the part of the current TDD in (11) that is a

function of the optimization variables, namely the switch-

ing angles αH = [α1 . . . α2d]
T and switch positions

uH = [u0 . . . u2d−1]
T , the harmonic-constrained three-level

OPP optimization problem with HWS and multipolar switch

positions is formulated as follows

minimize
αH ,uH

J(αH ,uH) (12a)

subject to b1 =
2

π

2d∑

i=1

∆ui cos(αi) = m (12b)

a1 = − 2

π

2d∑

i=1

∆ui sin(αi) = 0 (12c)

0 ≤ α1 ≤ α2 ≤ . . . ≤ α2d ≤ π (12d)

ûn ≤ 1

gn

2

Vdc

în,max (12e)

ui ∈ {−1, 0, 1} ∀i ∈ {0, . . . , 2d− 1} (12f)

∆ui ∈ {−1, 1} ∀i ∈ {1, . . . , 2d}, (12g)

where (12c) is imposed to ensure that the initial phase of the



TABLE I
PARAMETERS OF THE FILTER AND GRID.

Parameter Symbol SI value

Filter inductance Lf 0.35mH

Filter resistance Rf 0.3mΩ
Filter capacitance C 420µF

Filter capacitor resistance Rc 4mΩ
Transformer inductance Lt 526.41µH

Transformer resistance Rt 16.54mΩ
Grid inductance Lg 349.19µH

Grid resistance Rg 10.97mΩ

fundamental component of the OPP is zero. It is noteworthy

that problem (12) is not only nonconvex (like (8)), but also

mixed-integer due to the multiple candidate pulse patterns.

Hence, the optimal switching angles are computed for each

candidate pulse pattern, and subsequently the pair of switching

angles αH and switch positions uH that results in the globally

lowest ITDD is chosen as the optimal one.

III. NUMERICAL RESULTS

This section presents the performance of three types of

OPPs, namely (a) conventional (i.e., unipolar QaHWS) OPPs,

i.e., OPPs computed with (8), (b) current harmonic-constrained

unipolar QaHWS OPPs, i.e., OPPs computed with (8) that

is augmented with constraint (9), and (c) current harmonic-

constrained multipolar HWS OPPs, OPPs obtained by solving

problem (12). All the above-mentioned OPPs are computed

for the three-level NPC MV converter connected to the grid

via an LCL filter, see Fig. 1. The converter has 9MVA rated

power, a dc-link voltage of 4.84 kV, and a nominal frequency

of 50Hz, while the short-circuit ratio is 15. Moreover, the rated

line-to-line grid voltage is 3.15 kV. Finally, according to the

parameters provided in Table I, a filter resonance frequency

of 491Hz results.

Considering d = 5, the aforementioned OPP problems are

solved for 256 modulation indices in the equidistantly gridded

interval [0, 4/π]. Each optimization problem is solved for 500
random initial points to increase the probability of finding the

global minimum. Moreover, the infinite sum of harmonics in

the objective functions is approximated by considering the first

500 harmonics as the amplitudes of the current harmonics are

very small at higher frequencies.

A. Optimal Switching Angles and Grid Current TDD

The d optimal switching angles resulted from solving (8),

i.e., the conventional OPP problem, are depicted in Fig. 3(a).

Moreover, Fig. 3(b) shows the d angles obtained when solv-

ing (8) with constraint (9) imposed on the first eight odd, non-

triplen grid current harmonics (i.e., up to the 25th harmonic).

Finally, by using the same constraints for the current harmon-

ics as in the second problem, the 2d switching angles of the

relaxed (i.e., HWS multipolar) OPP optimization problem (12)

are shown in Fig. 3(c).
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(a) QaHWS unipolar OPPs without constraints on the current harmonics
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(b) QaHWS unipolar OPPs with constraints on the current harmonics
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(c) HWS multipolar OPPs with constraints on the current harmonics

Fig. 3. Primary switching angles αi (degrees) resulted from the unipolar
QaHWS OPP optimization problem (a) without and (b) with constraints on
the grid current harmonics, and (c) the current harmonic-constrained HWS
multipolar OPP optimization problem.

Furthermore, the comparison between the grid current TDDs

of the three aforementioned OPP problems is illustrated in

Fig. 4 over the entire range of modulation indices [0, 4/π].
As can be seen, when the harmonics are constrained, the

corresponding OPPs have higher current TDDs than for the

conventional (i.e., unconstrained) OPPs. The reason for this

is that the introduction of constraints on individual current

harmonics compromises the optimality of the unconstrained

problem, and as a result the current TDD increases. How-

ever, the current TDD produced by both types of harmonic-

constrained OPPs is still considerably lower than the 5% limit

imposed by the grid standards as long as m < 1.22. More

importantly, the OPPs obtained with the proposed problem

(see (12)), i.e., the constrained OPPs with relaxed symmetry

and polarity properties, not only produce lower current TDDs

than those of the constrained QaHWS unipolar OPPs over the

whole range of modulation indices, but they also outperform—

in terms of ITDD—the conventional OPPs for some intervals of

modulation indices, see Fig. 4. This is thanks to the additional

degrees of freedom in problem (12) as it can choose the

optimal solution among several pulse patterns and distribute
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Fig. 4. Current TDD (%) of the QaHWS unipolar OPPs without (solid, blue
line) and with (dashed, magenta line) constraints on the grid current harmonics
as well as of the harmonic-constrained HWS multipolar OPPs (dotted, green
line). The maximum level of current TDD allowed by the grid standards is
shown with the dotted red line.

2d switching angles over a wider range of values.

Finally, it is worth discussing the feasibility issue mentioned

in Section II-C. As can be seen in Fig. 4, the optimization

problems for both harmonic-constrained types of OPPs return

current TDDs that exceed the 5% limit when m ≥ 1.22. This

indicates that the harmonic distortions increases significantly

at such high modulation indices, implying that the computed

OPPs cannot respect the (hard) constraints imposed on indi-

vidual harmonics. This leads to feasibility issues that cannot

be addressed with the presented formulation. Nevertheless, as

mentioned in Section II-C, soft constraints can help overcome

this issue and enable the optimizer to return feasible (but not

necessarily favorable) solutions.

B. Pulse Patterns

Considering that grid-connected converters are typically

operated between m = 1 and 1.1, the three discussed types

of OPPs are presented in this section for modulation indices

m = 1.035 and m = 1.085, see Figs. 5 and 6, respectively.

The QaHWS unipolar OPPs—regardless of the presence of

harmonic constraints—have a unique sequence of switch po-

sitions, i.e., uQ = [0 1 0 1 . . . ]T , while, as expected, they

exhibit QaHWS, see the first two figures of Figs. 5 and 6.

On the other hand, when solving (12), HWS OPPs result, as

can be seen in Figs. 5(c) and 6(c). However, even though (12)

makes it possible to consider different switching sequences for

each modulation index, the unipolar sequence is chosen as the

optimal one for both examined operating points. It should be

mentioned, nevertheless, that multipolar patterns are chosen

for a wide range of modulation indices when m is smaller,

i.e., for m ∈ [0, 0.4]∪ [0.58, 0.66)∪ [0.7, 0.73)∪ [0.75, 0.83).

C. Grid Current Harmonics

To provide more insight into the computed OPPs, this sec-

tion presents the grid current harmonic spectra produced by the

three different types of OPPs. The same operating points are

considered as in Section III-B. More specifically, the harmonic

spectrum of the grid current produced by QaHWS unipolar

OPPs without additional constraints (i.e., those computed

with (8)) is depicted in Figs. 7(a) and 8(a) for modulation

indices m = 1.035 and m = 1.085, respectively. Owing
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(a) QaHWS unipolar OPPs without constraints on the current harmonics
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(b) QaHWS unipolar OPPs with constraints on the current harmonics
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(c) HWS multipolar OPPs with constraints on the current harmonics

Fig. 5. OPPs with d = 5 and m = 1.035 resulted from the unipolar QaHWS
OPP optimization problem (a) without and (b) with constraints on the grid
current harmonics, and (c) the current harmonic-constrained HWS multipolar
OPP optimization problem.

to the fact that the OPPs are computed by minimizing the

current TDD instead of individual harmonics, the harmonic

amplitudes are very low. As a result, the current TDDs are

as low as ITDD = 1.41% and ITDD = 1.56%, respectively,

i.e., much lower than the 5% limit dictated by the IEEE 519

standard [4].3 Nevertheless, when comparing the amplitude

of individual harmonics with their limits imposed by the

grid standards, it is observed that the 17th harmonic exceeds

its maximum allowed level for both considered modulation

indices, see Figs. 7(a) and 8(a).

To reduce the amplitudes of the above-mentioned current

harmonics so that they fulfill the harmonic grid standards, the

OPPs are computed again by adding constraints of the form (9)

to the optimization problem (8) for n = 5, 7, 11, . . . , 25. The

resulting grid current spectra clearly demonstrate that the 17th

harmonic is now within its limit for both modulation indices,

see Fig. 7(b) and Fig. 8(b). Noteworthy, these limitations do

not compromise the overall current quality much as the new

values of the grid current TDD are 1.42% and 1.93% for m =
1.035 and m = 1.085, respectively, i.e., still much lower than

the 5% required by the grid codes. This is attributed to the

3Note that the flexibility of the proposed harmonic-constrained OPP opti-
mization problem allows for the adoption of any other grid standards as only
the harmonic limits would need to be adjusted.
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Angle θ [rad]

−1

0

1

0 π
2

π 3π
2

2π

(b) QaHWS unipolar OPPs with constraints on the current harmonics
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Fig. 6. OPPs with d = 5 and m = 1.085 resulted from the unipolar QaHWS
OPP optimization problem (a) without and (b) with constraints on the grid
current harmonics, and (c) the current harmonic-constrained HWS multipolar
OPP optimization problem.

fact that the OPPs are computed such that both the current

TDD is minimized, while considering the LCL filter transfer

function from the switching signal to the grid current, and

relevant harmonics are constrained to comply with the grid

standards.

Subsequently, the harmonic spectra of the harmonic-

constrained HWS multipolar OPPs are shown in Figs. 7(c)

and 8(c) for m = 1.035 and m = 1.085, respectively. Starting

from the latter operating point, as can be seen in Fig. 8(c), the

17th harmonic is well within its limit, while ITDD is as low as

1.86%, i.e., it is lower than that of the constrained QaHWS

unipolar OPPs. Similar performance can be observed for m =
1.035 (see Fig. 7(c)), where all current harmonics, including

the 17th, are relatively low and within their permissible ranges,

thus resulting in ITDD = 1.37%. This value of current TDD is

not only lower than that achieved with the constrained QaHWS

unipolar OPPs, but it is even lower than that produced with

the conventional (unconstrained) OPPs. Finally, it is worth

mentioning that the 19th harmonic in Fig. 7(c)—which is

limited to its maximum allowed value—reveals the reason why

constraints on all relevant low-frequency harmonics are added

to the OPP problem, instead of merely imposing constraints

on the harmonics that violate their limits in the unconstrained

OPP case (e.g., the 17th harmonic in the discussed case).
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(a) QaHWS unipolar OPPs without constraints on the current harmon-
ics; ITDD = 1.41%
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(b) QaHWS unipolar OPPs with constraints on the current harmonics;
ITDD = 1.42%
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(c) HWS multipolar OPPs with constraints on the current harmonics;
ITDD = 1.37%
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(d) SVM; ITDD=6.45%

Fig. 7. Grid current harmonics (%) for m = 1.035. The grid standard limits
are shown as light gray bars, current harmonics that meet them are shown as
green bars, while harmonics that violate them are shown as red bars.

In a last step, for comparison purposes, SVM is imple-

mented by means of asymmetric regularly sampled CB-PWM

with appropriate common-mode voltage injection [1]. Compar-

ing the current harmonic spectra produced by the constrained

OPPs with that of SVM (compare Figs. 7(c) and 7(d), or

Figs. 8(c) and 8(d)), it is evident that the latter has much higher

harmonic amplitudes, as verified by the 6.45% and 8.36% cur-

rent TDD for modulation indices m = 1.035 and m = 1.085,

respectively. These values are about five to six times greater

than the ITDD achieved with the proposed modulation scheme.
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(a) QaHWS unipolar OPPs without constraints on the current harmon-
ics; ITDD = 1.56%
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(b) QaHWS unipolar OPPs with constraints on the current harmonics;
ITDD = 1.93%
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(c) HWS multipolar OPPs with constraints on the current harmonics;
ITDD = 1.86%
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Fig. 8. Grid current harmonics (%) for m = 1.085. The grid standard limits
are shown as light gray bars, current harmonics that meet them are shown as
green bars, while harmonics that violate them are shown as red bars.

Besides, individual harmonics clearly exceed their limits for

both studied modulation indices, rendering SVM unsuitable for

the specific application. Hence, these results clearly highlight

the benefits of the proposed OPPs and their superior harmonic

behavior.

IV. CONCLUSION

This paper presented the computation of three-level OPPs

for grid-connected converters with LCL filters. Even though

OPPs can produce the theoretical minimum current TDD, they

cannot ensure that harmonic grid standards are met when

applied to grid-connected power converters. As shown in this

work, by minimizing the grid current TDD and constrain

individual current harmonic amplitudes, the grid standards can

be fully respected, while achieving the best possible harmonic

performance. In addition, by relaxing the artificially imposed

restrictions on the three-level OPPs, i.e., quarter-wave symme-

try and unipolar switch positions, which limit the search space,

the computed OPPs can further improve the current quality

and achieve an even more favorable harmonic performance.

As demonstrated with the presented numerical results, the

proposed harmonic-constrained HWS multipolar OPPs not

only outperform conventional modulation methods, such as

SVM, but they are able to even occasionally produce lower

current TDD values than that of conventional (unconstrained)

OPPs.
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[7] L. G. Franquelo, J. Nápoles, R. C. P. Guisado, J. I. León, and M. A.

Aguirre, “A flexible selective harmonic mitigation technique to meet
grid codes in three-level PWM converters,” IEEE Trans. Ind. Electron.,
vol. 54, no. 6, pp. 3022–3029, Dec. 2007.
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