Modular High-Power Shunt-Interleaved Drive System: A Realization up to 35 MW for Oil & Gas Applications

Stefan Schröder‡, Pierluigi Tenca§, Tobias Geyer‡, Paolo Soldi‡, Luis Garces‡, Richard Zhang‡, Tommaso Toma‡, Paolo Bordignon‡

‡ GE Global Research, § GE Oil & Gas, ■ formerly with Ansaldo Sistemi Industriali, ‡ Ansaldo Sistemi Industriali

Abstract—The paper describes experimental results of a medium-voltage, modular, 35 MW drive for Oil & Gas applications realized by interconnecting voltage-source three-level converters equally sharing the motor current. Drives rated for tens of Megawatts are increasingly needed as torque helpers for gas turbines in the Oil & Gas industry and one envisions that they will replace them completely in the future. These drives must be very reliable, often capable of reversible power flow and high power quality when connected to weak grids in remote areas. The pronounced torsional eigenmodes of large compressors and gas turbines demand for very low torque harmonic content.

Keywords—multilevel converter; neutral-point clamped converter; modular converter; interleaving; synchronous machine drive; medium-voltage drive; active rectifier

I. INTRODUCTION

Electrical drives rated for tens of Megawatts and rotational speeds around 3000 rpm are increasingly needed in the Oil & Gas industry, especially in high-power compressor trains for Liquefied Natural Gas (LNG). The present role of these drives is to act as starter and helper for the prime movers of the compressor trains. Nowadays, such prime movers are still constituted by gas turbines, but it is envisioned that they will be entirely replaced by variable frequency drives [1]. Due to the required power levels, the machine is often synchronous with a classical field winding, smoothed poles and a mandatory brushless exciter to meet the safety requirements for explosive environments. Because of the huge economic value of LNG processes, such drives must be characterized by a very high reliability and availability for continuous duty. Moreover, they must feature a low harmonic content in the currents drawn from the grid and in the motor torque. The latter is of fundamental importance because of the lowly damped torsional eigenmodes of the mechanical shaft comprising a large gas turbine, compressors and the synchronous machine. Often, also a reversible power flow between the electrical machine and the grid is required.

This paper describes a medium-voltage modular synchronous machine drive conceived for Oil & Gas applications. As shown in Figure 2, the drive is realized by paralleling up to four three-level Neutral-Point Clamped (NPC) converters. This allows one to reach up to 35 MW. By interleaving, i.e. by properly phase-shifting the PWM equivalent carriers of the four converters, waveforms of very high quality are achieved on both the grid and on the machine side. Selected experimental results acquired during the full-scale product validation campaign are presented to highlight the benefits.

II. CHOICE OF DRIVE SYSTEM CONCEPT

As outlined above, the main requirements in the targeted Oil & Gas applications are very high power (tens of Megawatts), very low torque and grid harmonics and high availability.

A. High-Power Drive Options

Thyristors are available at very high power ratings. Furthermore, series connection is relatively simple and a proven approach. By using additional thyristor devices, redundancy can be easily implemented. Therefore, they are commonly used in Line-Commutated Inverters (LCI) for very high power applications. However, they can switch only once per fundamental cycle. Hence, the achievable power quality is comparatively poor. This typically implies the installation of bulky and expensive grid-side filters, which require careful design and tuning. Filters on the variable frequency machine side are typically not practical. Hence, thyristors are not attractive for a high torque quality drive application as considered here.

Consequently, only self-commutated topologies are considered in the following, which need fully controllable semiconductor devices. The available voltage and current ratings of these devices have increased significantly in the past. Nevertheless, the targeted power level cannot be achieved with state of the art semiconductors in a standard topology, e.g. 2 or 3-level converters using one semiconductor per switch position. For example, the power of a typical high-power, medium-voltage drive based on a 3-level NPC converter using 4.5 kV...
and 4 kA Integrated Gate Commutated Thyristors (IGCTs) is rated at approximately 10 MW.

Hence, it is mandatory to use several semiconductor devices in series or parallel connection. This can be done on a device level using direct series or parallel connection, where these devices are switched synchronously.

Alternatively, multi-level topologies can be chosen to increase the achievable voltage level compared to 2-level inverters. Here, several devices are effectively connected in series and the additional degrees of freedom allow for switching these devices independently. This increases both the available number of discrete voltage levels and the effective switching frequency. As a result, the voltage harmonics can be reduced thus directly improving the current and torque quality.

As a third option, complete converter modules can be paralleled (or series connected using isolation transformers). This option can also be used to enhance the achievable output performance as will be highlighted in the consecutive sections.

As described, using more semiconductors can address the power requirement and improve the power quality using suitable topologies. However, as a drawback, the part count of the system is increased, which increases the likelihood of failures thus reducing the reliability of the system. As a countermeasure, some kind of redundancy is generally required in these kinds of systems to fulfill the stringent system availability requirements common in the Oil & Gas industry.

In summary, it can be seen that standard converter solutions do not satisfactorily address all three requirements, i.e. power level, power quality and availability.

B. Selection of Switching Component

At high power levels, typically either Integrated Gate Bipolar Transistors (IGBTs) or IGCTs are used nowadays in self-commutated converters. IGBTs are dominating in drives with lower to medium power levels, since at lower voltages they facilitate very fast switching frequencies. At higher voltage levels their losses increase, their switching frequency decreases significantly and their decreased current capability limits the maximum power that can be handled by a single device to almost constant or even decreasing values. This makes IGCTs more attractive for higher voltage and power levels. They offer higher power capability per device, which reduces the component count and finally leads to a higher reliability. Consequently, in this drive system a 4.5 kV 4 kA IGCT was chosen as switching device. As will be detailed later, this high power rating allows one to achieve the drive requirements, namely power level and power quality, at a comparably low part count as a basis for high reliability.

C. Selection of Drive Topology

As already mentioned, multi-level topologies can increase both the power level and the output performance of a converter. Well known options are the Diode Clamped (DC), Flying Capacitor (FC) and the Cascaded Cell (CC) topologies, which use different concepts to balance the voltages among the switches.

The high power level considered here would require a high level number, which would pose significant hurdles on each of the topologies above – namely, the balancing of the tapped dc-link voltages, the size of the ‘flying caps’ or the multiple isolated power supplies for DC, FC or CC topologies, respectively. Hence, a shunt interleaved converter topology is chosen. Here, up to four independent 3-level NPC converters are connected via individual inductors to the machine. This allows the switching of the converters independently from each other enabling a higher output performance than single or hard paralleled converters. Furthermore, this topology builds on standard high-power converter units that can work independently of each other. This allows an elegant way to design a redundant drive system. The detailed working principle of the system is explained in the following section.

III. TOPOLOGY AND MAIN FEATURES OF THE MODULAR DRIVE SYSTEM

The modular structure of the chosen drive system topology is shown in Figure 2 [1] - [7]. The four converters are connected to the grid and to the machine using individual transformers and inductors, respectively. In this paper, each of the separate channels is called a thread, which comprises a transformer, a converter and the machine side inductor.

On the machine side, the equal sharing of the fundamental machine phase currents among the inverters, and machine phase currents with very low harmonic content are achieved through two main techniques: First, by proper synchronization
and phase interleaving (as described in the next section) among the equivalent PWM carriers of the individual inverters, as well as by proper inverter control. Second, by proper design of the machine side coupling inductances $L_e$. On the grid side, the same approach is used exploiting the purposely designed built-in stray inductances of the transformers.

The four-pole synchronous machine, rated for a fundamental frequency of 100 Hz, possesses a standard three-phase Y-connected stator. Its rotor field winding is fed by an integrated brushless exciter using a rotating three-phase diode bridge. The stator of the brushless exciter is fed by a low-voltage two-level voltage-source inverter. The machine and the converters satisfy the standards for operation in explosive environments. The four-pole machine used in this setup was operated up to 110 Hz fundamental frequency or 3300 rpm. Using a two-pole machine, this corresponds to 6600 rpm.

The air core coupling inductors, the machine and the $33 \, \text{kV} / 3 \, \text{kV}$ transformers have inverter-grade insulation. Figure 1 shows the well-known NPC topology constituting each converter and a picture of the Silcovert GN converter used within this project. During the test campaign, the drive system was connected to the grid by a $132 \, \text{kV} / 33 \, \text{kV}$ interconnection transformer.

The modulated phase voltages, arising from the use of synchronous PWM, are shown in Figure 3 for one active front end (AFE) at 50 Hz fundamental frequency and for one inverter (INV) at 100 Hz, respectively. The voltages are measured with respect to the DC-link mid point. Due to the phase shifting of the carriers, which is a characteristic feature of interleaving, the switching patterns among the threads differ. Consequently, the thread patterns are typically different from the ones in single converter drives, e.g. lacking the typically chosen pulse symmetry. Yet, as it can be seen subsequently, the resulting harmonic performance is superior.

Each converter has its own independent controller and is capable of autonomous operation if necessary. This was a pivotal requirement to enhance the system availability in case of failure. In addition, the converters must communicate and operate as a whole. These features have required the development of a control architecture based on a sophisticated distributed hardware and software scheme, whose details are beyond the scope of this paper.

**IV. INTERLEAVING CONCEPT**

The basic concept of interleaving relies on the common connection point (e.g. the motor voltage) ‘seeing’ the average of the individual converter voltages. By suitable modification of each converter voltage pattern, the (desired) fundamental voltages are constructively added and certain (undesired) harmonics are destructively added, i.e. cancelled.
A. Single-Phase Equivalent Circuit

To illustrate the concept of ‘averaging’ the voltages, a simplified single-phase (differential mode) equivalent circuit of \( k \) parallel inverters connected to the machine is shown in Figure 4 a). The inverter single-phase voltages \( V_{\text{INV}} \) shown in this picture represent only the differential mode part of the inverter voltages. Hence, common-mode effects are not visible in this simplified equivalent circuit anymore. However, in the considered drive system, common-mode currents are inhibited anyway as will be detailed in subsection C.

The inverters can be represented by an ideal voltage source with their average voltage \( V_{\text{INV AVG}} \) in series with the parallel connection of all the inverter impedances. This Thevenin equivalent circuit is shown in Figure 4 b). With the quantities defined as shown in this figure, the resulting machine phase voltage \( V_{M1} \) can be calculated according to:

\[
V_{M1} = \frac{Z_M}{Z_M + Z_{\text{INV}}/k} V_{\text{INV AVG}1} + \frac{Z_{\text{INV}}/k}{Z_M + Z_{\text{INV}}/k} V_{\text{EMF}1}
\]

with \( V_{\text{INV AVG}1} := \frac{1}{k} \sum_{i=1}^{k} V_{\text{INV}i1} \) \( \ldots (1) \)

Hence, the total effect of the inverters on the machine voltage (and current) can be described by the average of the \( k \) inverter phase voltages \( V_{\text{INV AVG}1} \).

In the next subsection, we will describe an approach to cancel undesired voltage harmonics in the voltage \( V_{\text{INV AVG}1} \) representing the effect of the inverters on the machine. Subsequently, key aspects of the inductor sizing are discussed. Finally, additional filter effects of the inductors are highlighted.

B. Harmonic Cancellation

The harmonic spectrum of PWM converters is characterized by integer multiples of the fundamental frequency \( f_0 \) and the carrier frequency \( f_c \). According to [8], each harmonic \( h_m(t) \) can be written as:

\[
h_m(t) = C_{mn} \cos(m(2\pi f_c t + \theta_c) + n(2\pi f_0 t + \theta_0) + \theta_{mn}) \ldots (2)
\]

Here, \( \theta_c \) and \( \theta_0 \) are the phase of the carrier and the fundamental, respectively; \( C_{mn} \) and \( \theta_{mn} \) are expressions depending on the modulation scheme; \( m \) and \( n \) are integer constants. Please note that different combinations of \( m \) and \( n \) can result in the same harmonic frequency, especially when synchronous PWM is used. In the PWM voltage spectrum, the (geometric) sum of all harmonic components described by (2) is visible. According to [9], even values of \( m \) are paired with odd values of \( n \) and vice versa for 3-level phase disposition natural sampled PWM. All other combinations yield zero amplitudes of the corresponding harmonic. Practical modulator implementations based on space-vector PWM show to behave qualitatively similar to this.

An important conclusion from (2) is that the amplitude \( C_{mn} \) of a certain harmonic does not change if the phase of the fundamental and/or the carrier is changed. Under this condition, only the phase \( \theta_{mn} \) of the harmonic is changed according to:

\[
\theta_{mn} = m\theta_c + n\theta_0 + \theta_{mn} \ldots (3)
\]

The value of \( n \) also decides about the nature of the resulting harmonic: if \( n \) is an integer multiple of 3 (including zero), the harmonic is common mode else it is differential mode [8]. The reason for this is that the sum of the three harmonics corresponding to each individual phase voltage with a fundamental phase shift \( \theta_i \) of \( 0^\circ \), \( 120^\circ \) and \( 240^\circ \), respectively, is non-zero exactly only under the condition that \( n \) is a multiple of 3.

In the interleaved system, each PWM unit uses the same fundamental and carrier frequencies but the phase of the carrier differs for each converter. By choosing the phases \( \theta_{ci} \) for each converter \( i \), certain classes of harmonics can be cancelled. The harmonics of each thread are the same but phase shifted by \( m\theta_{ci} \) according to (3). Considering the four thread system described in this paper and using the phases

\[
\theta_{c1} = 0^{\circ}, \quad \theta_{c2} = 45^{\circ}, \quad \theta_{c3} = 90^{\circ}, \quad \theta_{c4} = 135^{\circ} \ldots (4)
\]

all harmonics with \( m=2, 4, 6 \) (for all \( n \), i.e. including their sidebands) are cancelled and harmonics with \( m=1, 3, 5 \ldots \) are reduced but not cancelled. The cancellation of the harmonics in the output voltage (and hence the output current) is independent of the value of the connecting inductors and relies solely on the averaging of the individual converter voltages as already shown in subsection A.
C. Inductor Sizing

As opposed to that, the main purpose of the inductors is to limit the cross-currents between the threads. The \( i \)-th cross-current is defined as the \( i \)-th thread current minus the average of all thread currents. To achieve a cancellation (or reduction) in the output voltage, the corresponding harmonics of each thread must necessarily be phase shifted against each other as outlined above. Consequently, the resulting voltage difference among the threads will drive cross-currents between these threads. The amplitude of these currents is limited by introducing properly sized inductors. The design of the inductors is dominated by the currents in the order of the switching frequencies. For frequencies far beyond the switching frequencies the impedance of the inductor is significantly increased and the cross-currents are negligible. For currents well below the switching frequency (including also the fundamental frequency and dc) the impedance of the inductors is small and less effective. However, the individual current controllers of the threads can ensure an equal current sharing here.

It is important to note that in the system considered here only differential mode cross-currents can flow between the threads. Common mode currents (on both sides) are inhibited by the galvanic isolation provided by the transformers on the input side. This yields the following advantages. Firstly, only differential mode harmonic voltages need to be considered in the inductor design. Hence, the large common mode harmonic at \( f_C \) cannot drive any currents. Secondly, the cross-currents on the grid and on the machine side are completely independent of each other, which simplifies both the analysis and the control. Thirdly, since the thread currents are pure differential mode currents, a three-phase differential mode inductor could be used. (The latter option is not employed here since air-core inductors are used to provide better decoupling in case of thread failures.)

The cross-currents increase the RMS value of the thread currents and hence the losses. However, since the cross-currents are orthogonal to the fundamental currents, the change in the RMS value is rather small even for high cross-current values. Hence, instead of focusing on the RMS value, only the current ripple is typically considered to keep the peak current of each thread below a certain threshold.

Hence, the dominant cross-current harmonic is the first side band at twice \( f_C \). This harmonic is the same as the dominant harmonic seen in non-interleaved inverters. On the grid side, this current is limited by proper choice of the transformer stray inductance in standard (i.e. non-interleaved) converters. Here, the stray inductance of such converter-transformers is also sufficient to limit the cross-currents on the grid side in this system. On the machine side, the required inductor values are similar.

The voltage drop across the inductor reduces the available output voltage. However, this effect shows to be less critical than originally perceived. The main reason for this is that the synchronous motor is operated at (or close to) unity power factor (PF). Hence, the voltage drop across the inductor and the machine voltage are orthogonal to each other, and the effect on the voltage amplitude of the inverter is rather small even for relatively large inductor impedances. Even for a 25% pu (per unit) impedance, the increase in the converter voltage \( V_{\text{Conv pu}} \) is only 3% at the nominal drive operating point:

\[
V_{\text{Conv pu}} = \sqrt{100\%^2 + 25\%^2} = 103\%. \tag{4}
\]

The current control loops can account for the voltage drops across the inductors in a straightforward way.

D. Additional Filter Effects

An exemplary waveform of an average inverter voltage for 4 interleaved threads is shown in Figure 5. This voltage already shows a very good approximation of a sine wave. It has significantly finer and more voltage steps than the voltages commonly known from a single NPC converter. In fact, this voltage exhibits strong similarities to a 9-level converter pattern. If such a pattern were directly applied to an electrical machine, its inductive impedance would act as a low-pass filter resulting in an even smoother machine current. This well-known low-pass behavior is further pronounced in this system. As discussed earlier, the parallel connection of the four inductors is effectively seen in series to the machine impedance as can be seen in Figure 4 b). This results in a higher attenuation. It should be noted that although the inductance of a synchronous machine is high at the fundamental frequency (in the order of 1 pu), it is typically significantly smaller at higher frequencies, e.g. due to the effect of the damper windings. That means that the relative increase of the total inductance by the additional coupling inductors helps to further dampen the remaining harmonic frequencies in the average voltage \( V_{\text{INV AVG1}} \) of the inverters.

Another interesting effect related to this is the additional smoothing of the machine voltage. When the machine impedance is significantly lower than the parallel impedance of the inductors, the corresponding harmonic content of the average inverter voltage on the machine terminal is attenuated according to (1). The result of this filter effect can be clearly observed in the very smooth measured machine voltage waveforms that are shown in the validation section.

V. CONTROL

The structure of the control hardware is designed such that it allows for a high availability of the overall drive system. This is achieved by equipping each thread with its own dedicated control hardware, which is identical for all four threads. The
control units can act independently from each other – e.g. a failure in one thread does not affect the operability of the other threads' control units. The coordination and the data exchange among the four independent threads are enabled by a reflective memory scheme. Specifically, a given fraction of the control units' local memory is allocated as reflective memory. When new data is written into this fraction of the control unit’s memory, the changes are propagated to the memory of the other units via fiber optics. Provided that data is changed consecutively, the reflective memory acts as a single virtual memory unit that is physically located in and accessible by each of the four threads control units. This concept allows for seamless data exchange between the thread controllers while ensuring a high availability.

The control software is identical for all four threads. It consists of two main parts – a machine and a current controller for each thread. The machine controller is based on a state-of-the-art field oriented control scheme working in a stator-flux oriented orthogonal coordinate system. The torque reference is translated into a torque producing current reference, while flux errors are mapped into an orthogonal flux producing current reference. In steady state the machine is completely fluxed via the field current supplied by the brushless exciter.

The two orthogonal current references of the machine controller are divided by the number of threads and passed to the local thread current controllers. The latter regulate the thread currents independently from each other using measurements of the thread currents for feedback. The output of the thread current controller is a space vector. Each thread features a Pulse Width Modulator (PWM) that drives the IGCTs of the thread inverter by synthesizing an appropriate switching pattern. The switching pattern can be asynchronous, implying that the PWM runs with a fixed switching frequency, or synchronous, where the PWM frequency is a multiple of the fundamental frequency and where the equivalent PWM carrier is synchronized with the fundamental’s phase.

Since each thread controller acts locally, fluctuations in the dc-link voltage and/or variations in the inductors are accounted for locally. This ensures that the four thread currents are of equal magnitude and that they sum up to the commanded machine current. Within the controller bandwidth, undesired cross-currents between the threads are thus avoided.

To implement the interleaving scheme, the four thread controllers use the same sampling interval, but sample and act at time-instants shifted in time with respect to each other (e.g. a quarter of a sampling interval for 4 threads). Interleaved thread control implies that the machine controller works locally on one thread control unit at a time, and the machine controller execution is passed consecutively from thread controller unit to thread controller unit. This gives rise to a virtual master controller that is physically handed over from one thread control unit to the next one. Hence the machine controller runs at four times the sampling frequency of the thread current controllers. The resulting timing of the control tasks is depicted in Figure 6. Figure 7 shows typical interleaved voltage pulse patterns that are generated in each of the 4 threads and refer to the same phase.

In addition to the harmonic benefits outlined above, interleaving also improves the control performance with respect to non-interleaved control, where all four threads run at the same time-instants. The controller can react faster since the machine controller runs at four times the rate of the thread current controllers, and the thread controller execution is spread within the sampling interval.

In the current system, each of the four threads is equipped with an active front end (AFE) that allows drive operation also in full regenerating mode. Each AFE independently controls its dc-link voltages. The corresponding control cycle runs synchronously to the grid frequency, i.e. employs synchronous PWM. Proper phase shifting of the control tasks among the threads allows for interleaved operation similar to the machine side.

Summing up, the control concept relies on four independent thread control units that exchange data by one single virtual memory (realized with a reflective memory scheme). In a field-oriented controller setting, the machine (virtual master) controller sets the thread current references, while the thread (slave) controllers regulate their thread currents. Interleaving greatly enhances the waveform of the machine current. The use of four independent threads with four independent control units ensures a high level of availability. Neither a physical master controller nor a central memory unit is required due to the sequential execution of the machine controller on the local thread controllers and the reflective memory scheme.

VI. SELECTED EXPERIMENTAL RESULTS

During the development and validation procedure, the drive system was tested in various ways: extensive computer
simulations in Saber and Matlab, tests on a scaled-down drive system, full power tests of a phase leg and of the converters and finally full-scale system tests. Details of the complete validation approach are described in [1]. Here, characteristic results of the full-scale system tests are shown.

Figure 12 and Figure 13 show the full-scale drive system on a test site of GE Oil & Gas in Massa, Italy. In Figure 12, the synchronous machine and the four converter units can be seen. Figure 13 shows a gas turbine, a synchronous generator and a resistor bank that were used to test and validate the electrical drive system in generator and motor mode.

In order to validate motoring operation, the drive was connected to the synchronous generator that was loaded with the resistor bank. Figure 8 and Figure 9 show typical waveforms captured during operation at 3000 rpm, i.e. 100 Hz electrical frequency, with the drive drawing 34 MW from the grid and delivering 32 MW to the resistive load. Here and in the following figures, positive currents reflect currents flowing from the grid into the AFEs, and from the inverters to the machine, respectively.

Both the AFEs and the inverters were interleaving and ran synchronous PWM. Figure 8 refers to grid side. The upper plot depicts the individual AFE phase A currents exhibiting the typical ripple, which, however, is phase-shifted with respect to each other. As a result, as depicted in the lower plot, the ripple almost perfectly cancels out in the total grid current, which is equivalent to the sum of the four AFE currents.

Equivalently, Figure 9 shows the effect of interleaving on the machine side. Here again, the sum of the single inverter phase currents leads to a near sinusoidal phase current. In addition, the very smooth machine voltage helps to further reduce the losses in the machine. In this operating point, the flux was smaller than nominal proving a significant current capability margin and validating the overall cooling system.

In the framework of an additional test campaign, the drive was connected to a gas turbine replicating a typical LNG train setup, which also allowed the validation of the regenerative mode of operation. Figure 10 and Figure 11 depict selected waveforms of the AFEs and the inverters, respectively, which were recorded at 3000 rpm with 31 MW fed into the grid. Unlike above, the interleaving of the AFEs was disabled. The absence of interleaving among the AFEs renders their corresponding phase currents almost identical. Therefore, only one AFE phase current is shown in the upper graph of Figure 10. The lower graph of Figure 10 shows the sum of the four AFE phase A currents, which exhibits the same ripple as the
individual AFE currents. A direct comparison with the grid current waveform shown in Figure 8 underlines the significant improvements achieved by interleaving.

The inverters were interleaved but operated here with asynchronous PWM as shown in Figure 11, from which one infers that the motor phase currents and voltages are again almost sinusoidal.

VII. CONCLUSIONS

The topology, the main features and the interleaving principle were described for a modular drive system composed of four IGCT-based 3-level NPC converters. Typical test results on the full-scale system in motoring and regenerative operation were shown. The interleaving control strategy delivers an excellent grid and output quality and an optimized performance that improves the characteristic and operability of large electrical drives required e.g. for Oil & Gas applications. Given the high power, this output performance is a remarkable achievement –particularly when compared to the present state of the art for drives based on voltage-source converters or LCIs. The drive system builds on standard industrial converter units based on high power IGCT devices as a basis for high reliability. The fully modular system concept allows one to further improve the system availability by the use of redundancy. The same drive configuration can be extended to even higher power levels by increasing the single thread power density and the NPC converter output voltage. The described drive system is commercially available under the product family name Steadfast 40 [10].

VIII. ACKNOWLEDGMENTS

The authors would like to express their gratefulness to the people involved in this project for their valuable contributions and support during both the development and validation phase. Specifically, these people include Giuseppe Ferrari, Roberto Tessarolo and Silvano Tola from Ansaldo Sistemi Industriali (ASI), as well as Massimiliano Alvino, Roberto Baccani, Roberto Biondi, Paul Decicco, Cyrus Harbourt, Allen Ritter, Rajarshi Sen, Christof Sihler, Joseph Song and Parag Vyas, who are with General Electric (GE). Additionally, the authors would like to acknowledge the support of the following persons: Alessandro Alia, Fulvio Boattini, Matteo Carpaneto, Enzo Ciulin, Alberto Coffetti, Dario Colombo, Stefano D’Arrigo, Rajib Datta, Stefano Del Puglia, Amr Elaguizy, Carlo Gallant, Teresa Gargano, Andrea Iuretig, Paolo Masini, Ivo Pascolo, Michele Povolero, Alberto Roda, Robert Rösner, Marco Ruggiero, Paolo Segarich, Pietro Serra, Fahran Shakil, Mark Shepard and Francesco Soso.

REFERENCES