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Abstract—This paper presents a direct model predictive control
(MPC) method for drive systems with superior steady-state and
dynamic performance. Speci�cally, the discussed MPC algorithm
achieves a steady-state behavior that is similar or better than
that of a linear controller with a dedicated modulator, and fast
transient responses that characterize direct controllers. Moreover,
it ensures a �xed switching frequency by allowing for one switch-
ing transition per phase and sampling interval. Furthermore,
the controller utilizes the stator current gradient to predict the
evolution of the drive system within the prediction horizon.
To �nd the optimal switching time instants—and thus ensure
favorable performance—the control and modulation problems
are formulated in one computational stage as a constrained
quadratic program (QP). To solve the latter within a few
microseconds, a computationally ef�cient QP solver based on
a gradient method is proposed that enables the real-time imple-
mentation of the presented algorithm. To further alleviate the
computational demands of the proposed method, a mechanism
that can identify suboptimal switching sequences at the very early
stages of the optimization process is proposed. The effectiveness of
the proposed control scheme is experimentally veri�ed on a3kW
drive system consisting of a two-level inverter and an induction
machine.

Index Terms—AC drives, model predictive control (MPC),
direct control, quadratic programming, power electronic systems.

I. I NTRODUCTION

F INITE control set model predictive control (FCS-MPC)
is a control method for power electronics that has gained

popularity in the last decade [1], [2]. A direct control strategy,
FCS-MPC exploits the discrete nature of power converters by
considering the control inputs from a �nite set for which the
future behavior of the power electronic system is predicted. To
compute the optimal control input, i.e., the converter switch
position, that results in the most desirable system behavior, as
quanti�ed by a performance criterion (or criteria), the output
reference tracking and modulation problems are formulated
in one computational stage [3]. This control scheme can
achieve fast transient responses, but also suffers from several
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drawbacks, such as variable switching frequency and spread
harmonic spectra with increased harmonic energy, especially
when poorly designed [4]. When electric drives are of interest,
such harmonic current distortions can lead to increased iron
and copper losses [5].

Considering the above-mentioned drawbacks of FCS-MPC,
some methods have been presented that aim to address
them. For example, a frequency-weighted MPC scheme was
proposed in [6], where a band-stop �lter was included in
the controller so that the underlying optimization problem
accounted for the current spectral properties. However, even
though the current harmonic spectra can be shaped to some
extent, the switching frequency cannot be made constant.
In [7] and [8], direct MPC schemes were combined with a
separate modulator to ensure a constant converter switching
frequency. By doing so, however, the inherent fast dynamics
of direct control schemes are compromised due to the presence
of a modulator. Other works, such as [9]–[17], propose direct
MPC algorithms with an implicit modulator, i.e., the switch
position is not limited to change only at the discrete time
instants—as with conventional FCS-MPC—but it can change
at any time instant within the sampling interval. Such MPC
schemes compute not only the optimal switch positions, but
also the associated time instants within the sampling interval
they have to be applied to the converter, such that the ripples
of the controlled variables, e.g., stator current, electromagnetic
torque, stator �ux magnitude, etc., are reduced. However,
methods such as [11]–[14], [16]–[18] do not guarantee global
optimality, whereas the algorithms in [10], [15] do not ensure
a �xed switching frequency. Moreover, it is worth mentioning
that the techniques in [9], [12], [14], [17], [18], while operat-
ing the converter at a constant switching frequency, produce
nondiscrete harmonic spectra due to the fact that the computed
switching patterns are not repetitive.

An alternative approach to tackle both problems of variable
switching frequency and nondiscrete harmonic spectra in direct
MPC schemes is to use the so-called pre-computed switch-
ing sequences [19]–[22]. These control schemes compute
the optimal switching time of speci�c switching sequences.
To this aim, the optimization problem is formulated as an
unconstrainedquadratic program (QP) which allows for an
analytical solution. As a result, the computational complexity
of the MPC problem is greatly reduced, thus addressing the
inherent disadvantage of FCS-MPC that relates to its high
computational requirements [4]. Nevertheless, due to the un-
constrained nature of the optimization problem, such methods



do not always guarantee optimality or symmetrical switching
sequences, and thus discrete harmonic spectra. Moreover,
although [23] imposes constraints on the applications times,
it is limited to simple single-output systems, such as dc-dc
converters.

Motivated by the shortcomings of the aforementioned MPC
algorithms and the associated challenges, [24] presented adi-
rect MPC method with a �xed switching frequency for variable
speed drive systems. This control technique manages to both
minimize the stator current distortions and operate the drive
at the desired (constant) switching frequency. The former is
ful�lled by capturing an approximate value of the rms current
ripple in the objective function. To achieve the latter, [24]
ensures that each of the three converter phase legs switches
within the sampling interval in a speci�c chronological order
and only once, introducing, in essence, a �xed modulation
half-cycle, similar to carrier-based pulsewidth modulation
(CB-PWM) or space vector modulation (SVM) [25]. In doing
so, repetitive, symmetrical switching sequences are applied to
the converter, which result in discrete stator current harmonic
spectra, with harmonic energy located only at odd nontriplen
multiples of the fundamental frequency. Moreover, given that
the optimization problem underlying direct MPC is formulated
as aconstrainedQP, optimality is guaranteed, thus the best
possible behavior of the drive is ensured for the whole range
of operating conditions. To achieve this, nevertheless, [24] has
to solve six constrained QPs (one for each possible switching
sequence) in real time before concluding to the global optimal
solution, i.e., the optimal sequence of switch positions and
the corresponding switching time instants. Consequently,the
associated computational burden hindered the real-time imple-
mentation, and thus experimental validation, of the method.

To signi�cantly reduce the computational complexity of the
direct MPC method in [24], this paper presents a computation-
ally ef�cient solution of the underlying MPC problem, thus
rendering its real-time implementation possible. To this end,
this paper tackles the challenges of the real-time implementa-
tion, which are twofold. First, although several open-source
and commercial QP solvers are available [2, Section IV],
they are commonly designed for general QP problems. Con-
sequently, they may not be able to solve the MPC problem
of interest in real time within a few hundred, or even tens, of
microseconds, since they do not exploit its structure. Indeed,
the execution time greatly depends on various factors of the
optimization problem, such as the size of the state and input
vectors, the number of the constraints and the geometry of
the feasible region, see [26] for a comprehensive assessment
of different QP solvers. Therefore, to facilitate the real-time
implementation of the direct MPC algorithm, an ef�cient and
highly reliable gradient-based QP solver is developed in this
paper. This algorithm exploits the properties of the QP problem
at hand and achieves a fast and reliable convergence.

To further reduce the computational demands of the MPC
algorithm, a method is introduced to deal with the second
challenge of the real-time implementation, namely the needto
solve a unique constrained QP for each one of the six possible
switching sequences within each sampling interval. Since not
all switching sequences are good candidate solutions at any
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Fig. 1: Two-level three-phase voltage source inverter driving an IM.

given instant of the problem, the corresponding QPs may be
ill-posed, leading to poor convergence rates and thus longer
solving times. To tackle this issue, a mechanism is proposed
that can detect the unsuited switching sequences with only a
few computations. Thanks to this, only one or two QPs need
to be solved at each sampling interval, while still guaranteeing
global optimality. As a result, the direct MPC scheme becomes
computationally tractable, without sacri�cing its performance.
To show this, the controller is experimentally evaluated with
a drive system consisting of a three-phase two-level voltage
source inverter and an induction machine (IM).

This paper is structured as follows. Section II introduces
the mathematical model of the case study of this paper. The
direct MPC scheme is presented in Section III. In Section IV,
the proposed gradient-based QP algorithm is explained along
with the detection mechanism of the unsuited switching se-
quences. The performance of the proposed control scheme is
experimentally evaluated in Section V. Finally, conclusions are
drawn in Section VI.

II. M ATHEMATICAL MODEL OF THE SYSTEM

The examined system consists of a three-phase two-level
voltage source inverter and an IM, as shown in Fig. 1.
The dc-link voltage is assumed to be constant and equal
to its nominal valueVdc . The modeling of the system as
well as the formulation of the control problem are done in
the stationary orthogonal�� reference frame. Therefore, the
Clarke transformation matrix
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#

(1)

is employed to map a variable� abc = [ � a � b � c]T in the abc-
plane into a variable� �� = [ � � � � ]T in the �� -plane.1

Let u abc = [ ua ub uc]T denote the three-phase switch
position of the two-level inverter, whereux 2 U = f� 1; 1g,
with x 2 f a; b; cg, is the single-phase switch position. In each
phase, the values� 1 and1 correspond to the phase voltages
� Vdc

2 and Vdc
2 , respectively. Thus, the voltage applied to the

machine terminalsvs is

vs =
Vdc

2
u =

Vdc

2
Ku abc : (2)

The dynamics of the squirrel-cage IM can be fully described
by the differential equations that involve the stator current i s,

1In the sequel of the paper, the subscript�� used to denote variables in
the �� -plane is omitted to simplify the notation.



the rotor �ux  r , and the angular speed of the rotor! r . This
leads to [27]
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d! r

dt
=

1
�

(Te � T` ) ; (3c)

whereRs (Rr ) is the stator (rotor) resistance,X ls (X rs ) the
stator (rotor) leakage reactance, andX m the mutual reactance.
Moreover, � s = X r D=(RsX 2

r + Rr X 2
m ) and � r = X r =Rr

are the transient stator and rotor time constants, respectively,
where the constantD is de�ned asD = X sX r � X 2

m , with
X s = X ls + X m and X r = X lr + X m . Finally, � is the
moment of inertia, whileTe and T` are the electromagnetic
and load torque, respectively.

Based on (2) and (3), the model of the drive system in
continuous-time state-space representation is written as

dx (t)
dt

= F x (t) + GKu abc(t) (4a)

y (t) = Cx (t) ; (4b)

where the state vector isx = [ i s� i s�  r�  r� ]T ,2 while
the three-phase switch position and the stator current are the
system input and output, respectively, i.e.,u abc = [ ua ub uc]T

andy = [ i s� i s� ]T . Moreover, matricesF , G, andC are the
system, input and output matrices, respectively, and they can
be easily derived from (3) [3, Appendix 5.A].

Finally, by using forward Euler discretization the discrete-
time state-space model of the system is derived as

x (k + 1) = Ax (k) + BKu abc(k) (5a)

y (k) = Cx (k) ; (5b)

with k 2 N, A = I + F Ts , and B = GTs, whereI is the
identity matrix of appropriate dimensions, andTs the sampling
interval.

III. D IRECT MPC WITH FIXED SWITCHING FREQUENCY

The discussed MPC algorithm was initially proposed in [24]
and re�ned in [28]. In the sequel of this section, the main
principles and characteristics of the controller are presented.

A. Control Problem

The main objective of the controller is to minimize the
stator current ripple and keep the switching frequency of the
converter constant. To do so, each phase of the converter is
allowed to switch once within the sampling intervalsTs, as
exempli�ed in Fig. 2(a).

Let t i , i 2 f 1; 2; 3g, denote the switching instants that are
placed in an ascending order within one sampling interval

2Note that due to the slower mechanical dynamics, the angularspeed of
the rotor ! r is treated as a (relatively slowly) varying parameter rather than
as a state variable.
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Fig. 2: Example of the evolution ofi s� over two sampling intervals by
applying the depicted switching sequence.

Ts, i.e., 0 � t1 � t2 � t3 � Ts. Thus, each sampling
interval is divided into four sub-intervals[0; t1), [t1; t2),
[t2; t3) and [t3; Ts), which are the application times of four
switch positions. Speci�cally, at the beginning of the current
samplingt0 � 0, and untilt1, the last switch position applied
in the previousTs is applied, i.e.,u abc(t0) = u abc(t �

0 ). At
time instantt1, a switching transition is performed in one of
the three phases, implying that the switch positionu abc(t1)
is applied. Following, at time instantt2, the switch position
u abc(t2) is applied such that one of the two thus far inactive
phases is switched. Finally, the only inactive phase left is
forced to switch at time instantt3 by applying switch position
u abc(t3). As can be understood, by following this principle,
the three phases of the system can switch in six possible
combinations, see the left-hand side of Table I. For example,
phasea may switch �rst, followed by consecutive changes in
phasesb andc, or vice versa, etc.

The above concept can be extended to longer prediction
horizons, which are adopted in this work due to the im-
provements they bring in the steady-state performance [29].
However, as shown in [28], to keep the number of possible
switching sequences constant and equal to six—instead of
increasing it exponentially with the horizon stepsNp, i.e.,
6N p —the switching sequences are mirrored with respect to
the discrete time steps in a consecutive fashion, similar to,
e.g., the SVM switching pattern [25]. Considering that a two-
step horizon (Np = 2 ) is implemented in this work, this means



TABLE I: Possible switching sequences for a two-step horizon.

Number Phase with the switching transition
of 1st sampling interval 2nd sampling interval

sequence First Second Third First Second Third
1 a b c c b a
2 a c b b c a
3 b a c c a b
4 b c a a c b
5 c a b b a c
6 c b a a b c

that the switching sequence in the second prediction interval
mirrors that of the �rst prediction interval with respect toTs,
as illustrated in Fig. 2(a). Table I summarizes all possible
switching sequences over a two-step prediction.

To describe the above, the vector of switching time instantst
and the vector of switch positions (i.e., the switching sequence)
U are introduced. These are de�ned as

t =
h
t T (k) t T (k + 1)

i T
(6a)

U =
h
U T (k) U T (k + 1)

i T
; (6b)

where

t (`) =
h
t1(`) t2(`) t3(`)

i T
(7a)

U (`) =
h
u T

abc(t0(`)) u T
abc(t1(`)) u T

abc(t2(`)) u T
abc(t3(`))

i T
:

(7b)

with ` 2 f k; k + 1 g. It is important to point out that,
as explained above, it is implied thatU (k + 1) =
[u T

abc(t3(k)) u T
abc(t2(k)) u T

abc(t1(k)) u T
abc(t0(k))]T , i.e.,

u abc(t0(k+1)) = u abc(t3(k)) , u abc(t1(k+1)) = u abc(t2(k)) ,
u abc(t2(k + 1)) = u abc(t1(k)) , and u abc(t3(k + 1)) =
u abc(t0(k)) . Note, however, that the switching times may
be asymmetric, thust1(k) is not necessarily equal to
2Ts � t3(k + 1) , etc.

B. Control Method

The main control objective is the minimization of the (ap-
proximate) rms stator current error, since this corresponds to
the minimization of the stator current total harmonic distortion
(THD) [30, Appendix A]. As explained in [24] and [28], this
goal can be mapped into the objective function

J =
k+1X

` = k

� 3X

i =1

ki s;ref (t i (`)) � i s(t i (`))k2
2

+



 �

�
i s;ref (Ts(`)) � i s(Ts(`))

� 


 2

2

�
;

(8)

where the current tracking error is penalized at the switching
instants and at the discrete time steps. Note that the diagonal,
positive de�nite matrix � � 0 2 R2� 2 is introduced to
penalize more heavily the tracking error at the discrete time
steps. As explained in [28, Section III], by doing so, symmetry
in the applied switching sequences is enforced, which enables
the elimination of undesired low-frequency harmonics.

To �nd the optimal switching time instantst � , the current
error, as quanti�ed by (8), needs to be computed for all

six possible switching sequencesU , as mentioned in Sec-
tion III-A. To do so, the evolution of the stator currenti s

within all the subintervals of the prediction horizon needsto
be computed for eachU . Given that the sampling intervalTs is
much smaller than the fundamental periodT1, i.e., Ts � T1,
it is assumed that the derivative of the stator current when
applying a switching transition is constant withinTs. Such an
assumption implies that the stator current trajectories within
the subintervals of the horizon can be described by their
corresponding gradients, i.e.,

m (t i (`)) =
di s(t i (`))

dt
= C (F x (t0(k)) + GKu abc(t i (`))) ;

(9)
wherei 2 f 0; 1; 2; 3g and` = k; k + 1 . Note that because of
the assumption of constant gradients withinTs, (9) computes
the gradients at the switching instantst1(`), t2(`), and t3(`)
based on the measured/estimated state, i.e.,x (t0(k)) .

Utilizing the gradients provided by (9), the stator currentat
the switching instants and discrete time steps can be calculated
as

i s(t i (`)) = i s(t i � 1(`)) + m (t i � 1(`))( t i (`) � t i � 1(`)) ; (10)

with i 2 f 1; 2; 3; 4g andt4 = Ts.
On the same principle, the current reference is assumed to

evolve in a piecewise linear fashion within the horizon, with
a constant gradient for each prediction step, given by

m ref (`) =
i s;ref (` + 1) � i s;ref (`)

Ts
: (11)

Hence, the current reference over the horizon is

i s;ref (t) = i s;ref (`) + m ref (`) t : (12)

An example of the stator current evolution and the correspond-
ing reference on the� -axis is shown in Fig. 2(b).

Finally, based on expressions (9) to (12), and after some
algebraic manipulations, function (8) can be written in vector
form as

J = kr � Mt k2
2 ; (13)

where the vectorr 2 R8N p and matrixM 2 R8N p � 3N p , with
Np = 2 , are given in the appendix.

C. Control Algorithm

Taking into account the control principles developed in Sec-
tions III-A and III-B, the direct MPC algorithm is summarized
in the following.

In a �rst step, thesevenunique stator current gradients are
computed based on the measured/estimated state vectorx (t0)
and the possibleeight switch positionsu abc, i.e.,

m w = C (F x (t0) + Gu w ) ; (14)

wherew 2 f 0; 1; : : : ; 6g. Note that in (14),u w = Ku abc;w

stands for the unique voltage vectors in the�� -plane (six
active and one zero vector), see Fig. 3, whereu j , j 2
f 1; 2; : : : ; 6g, are the active vectors, andu 0=u 7 the zero
vector.
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Fig. 3: Two-level inverter switch positions in the stationary (�� ) plane.

Subsequently, the controller enumerates the six possible
switching sequencesUz , z 2 f 1; 2; : : : ; 6g, shown in Table I.
For each one of them, an optimization problem of the form

minimize
t 2 R6

kr � Mt k2
2

subject to 0 � t1(k) � t2(k) � t3(k) � Ts

� t1(k + 1) � t2(k + 1) � t3(k + 1) � 2Ts

(15)

is formulated. According to [24] and [28], the QP (15) has to
be solved six times—once for eachUz—based on an off-the-
self QP solver [2, Section IV] to yieldt z and the associated
cost Jz . However, in this work, (15) is ef�ciently solved by
the QP solver proposed in Section IV. Moreover, as explained
in that section, the developed solver can detect unsuitedUz

with a simple one-step projection method, meaning that at
most two QPs (15) need to be solved in real time. As a result,
the computational burden of the direct MPC algorithm is kept
modest, thus facilitating its real-time implementation.

In a last step, the pair of switching sequence and time
instants that is globally optimal, i.e.,f U � ; t � g, is chosen by
solving the following trivial optimization problem

minimize
z 2 f 1;2;:::; 6g

Jz : (16)

According to the receding horizon policy [3], only the switch
positions that correspond to the �rstTs are applied to the
converter at the corresponding time instants, i.e.,

U � (k)=
h
u � T

abc(t0(k)) u � T
abc(t �

1(k)) u � T
abc(t �

2(k)) u � T
abc(t �

3(k))
iT

t � (k)=
h
t �
1(k) t �

2(k) t �
3(k)

i T
:

The block diagram of the proposed direct MPC scheme is
shown in Fig. 4, and the pseudocode is provided in Algo-
rithm 1.

D. Observer

MPC, being in essence a proportional controller, can be
susceptible to steady-state tracking errors due to model un-
certainties and variations, measurement noise, system non-
idealities, such as dead-time effects, etc. [2]. To tackle this,

dc link

�
=Minimization of

objective function

Calculation of
current gradient

Observer

z � 1

IM

i s; ref (t � , U � )

u �
abc ( t 3 )

Encoder

i s

! r

^ r

î s

Fig. 4: Fixed switching frequency direct MPC for a two-levelthree-phase
voltage source inverter driving an IM.

Algorithm 1 Fixed Switching Frequency Direct MPC

Given u abc(t �
0 ), i s;ref (t0) andx (t0)

1: Compute the corresponding gradient vectorsm w , w 2
f 0; 1; : : : ; 6g

2: Enumerate the possible switching sequencesUz , z 2
f 1; 2; : : : ; 6g, based onu abc(t �

0 )
3: For eachUz :

Detect if Uz is unsuited;
If not, solve the QP (15). This yieldst z andJz .

4: Solve optimization problem (16). This yieldst � andU � .
Returnt � (k) andU � (k).

an observer, such as a Kalman �lter (KF), can enhance the
robustness of MPC schemes to parameter mismatches and
other disturbances, see, e.g., [31], [32]. To achieve a high
degree of robustness as well as to obtain the rotor �ux, a
KF is implemented in this work. Based on the discrete-time
state-space model (5), the KF equations are [33]

x̂ (k + 1 jk) = A x̂ (k) + Bu abc(k)

P (k + 1 jk) = AP (kjk)A T + Q

L (k + 1) = P (k + 1 jk)C T (CP (k + 1 jk)C T + R )� 1

x̂ (k + 1 jk + 1) = x̂ (k + 1 jk)

+ L (k + 1)( y (k + 1) � C x̂ (k + 1 jk))

P (k + 1 jk + 1) = P (k + 1 jk) � L (k + 1) CP (k + 1 jk) ;
(17)

whereL is the Kalman gain matrix,̂x is the estimated state,P
is the error covariance matrix, whileQ andR are the system
noise and measurement covariance matrices, respectively.

IV. GRADIENT METHODS FORDIRECT MPC

Gradient projection methods have shown to be very ef-
�cient for QPs, especially when the constraints are simple.
In particular, they have been widely used for QPs where
the variables of interest are only box-constrained [34]. For
general QPs, projecting the variables onto the feasible region
may require signi�cant computations. However, the constraints



Start-up

Given u abc ( t �
0 ) , i s; ref ( t 0 ) andx ( t 0 )

m w = C (F x ( t 0 ) + Gu w ) , w 2 f 0; 1; :::; 6g

z = 0 , J � = + 1

z = z + 1

Check if U z
is unsuited

J z = + 1

if (J z < J � ) f J � = J z ;
t � = t z ; U � = U z g

Check if z = 6

Returnt � ; U �

t z = T ~t �

Formulate the QP
problem (22) based onU z

� = � 1, g0 = H ~t 0

� = � + 1

kP 
 ( ~t � � g � )
� ~t � k � tol ?

~t � = ~t � ,
J z = 1

2
~t T

� H ~t + f T ~t �

~t � +1 = P 
 ( ~t � � � � g � ) ,

g � +1 = H ~t � +1 � f

� � +1 =
� ~t T

� � ~t �
� ~t T

� � g �

yes

yes

no

no

H , f , ~t 0

yes

no

QP
solver

Fig. 5: Flowchart of the proposed �xed switching frequency direct MPC
scheme.

in many MPC problems for power electronic systems are
simple and regular (i.e., global), thus the projection ontothe
problem-speci�c feasible region can be ef�ciently performed
by fully exploiting its geometry. In this section, we propose
a computationally ef�cient projection method for the QP
problem of the direct MPC discussed in Section III. The
�owchart that summarizes the proposed gradient-based direct
MPC scheme and the QP solver is shown in Fig. 5.

A. Reformulation of the Feasible Set

The feasible set of the QP problem (15) is a so-called
truncated monotone cone. The projection of a variable onto
a truncated monotone cone is complicated, see [35] and
references therein. Although some algorithms exist, they rely
on complex approaches, such as multiparametric program-
ming [35], or involve computationally intensive operations,
such as the computation of pseudo-inverses of matrices [36].

To address this and to achieve a computationally ef�cient
projection, the feasible set is �rst reformulated by introducing
the new variables~t i = t i � t i � 1, with i 2 f 1; 2; 3; 4g and

t4 = Ts. Note that~t i is essentially the application time of the
switch positionu abc(t i � 1). In doing so, the feasible set can
be described by simple bound constraints and one equality
constraint, i.e.,~t i � 0, and

P 4
i =1

~t i = Ts. This concept can
be applied to all variables involved in the long-horizon direct
MPC problem.

Based on the above, the vector of application times is
de�ned as

~t =
h
~t T (k) ~t T (k + 1)

i T
(18)

where
~t (`) =

h
~t1(`) ~t2(`) ~t3(`) ~t4(`)

i T
: (19)

With (18), function (13) is rewritten as

J = k~r � ~M ~t k2
2 ; (20)

where the vector~r and matrix ~M are provided in the ap-
pendix. After expanding (20) as

J = ~t T ~M T ~M ~t � 2~r T ~M ~t + ~r T ~r (21)

and by omitting the constant term~r T ~r , the reformulated
optimization problem can be stated as

minimize
~t 2 R8

1
2

~t T H ~t � f T ~t

subject to ~t � 0
4X

i =1

~t i (`) = Ts; 8` = k; k + 1 ;

(22)

whereH = 2 ~M T ~M is a symmetric, positive (semi)de�nite
matrix, f = 2 ~M T ~r , 0 is a zero vector of appropriate
dimensions, and� denotes componentwise inequality. Note
that after the QP problem (22) has been solved, the switching
time instantst can be simply calculated as

t = T ~t ; (23)

where the transformation matrixT is provided in the appendix.

B. Projection onto the Feasible Region

An important step in gradient methods for constrained QP
problems is the projection of the variables of interest ontothe
feasible region. Let the feasible region of (22) be de�ned as


 := f ~t j ~t � 0;
4X

i =1

~t i =
8X

i =5

~t i = Ts; ~t 2 R8g:

The projection of any vectorz onto 
 is the minimizer of the
problem

minimize
~� 2 


k~� � zk2
2 : (24)

The proposed projection algorithm is based on constructing
the associated Lagrangian of (24), i.e.,

L ( ~� ; � 1; � 2; � ) =
1
2

~� T ~� � zT ~� � � 1(aT
1 ~� � Ts) � � 2(aT

2 ~� � Ts) � � T ~� ;

(25)

where� 1; � 2 2 R and � 2 R8 are the so-called Lagrangian
multipliers. Moreover,a1 = [ 1T

4 0T
4 ]T and a2 = [ 0T

4 1T
4 ]T



are the vectors of the equality constraints, where0 and1 are
vectors with all components being zero and one, respectively,
and of dimension indicated by their subscript. The �rst-order
necessary conditions, which are known as the Karush-Kuhn-
Tucker (KKT) conditions, state that if~� � , i.e., the projection
point, is a local solution of (24), then there is a set of
Lagrangian multipliersf � � , � �

1, � �
2g, such that the following

conditions are satis�ed at (~� � , � �
1, � �

2, � � ) [34]

~� � � z � � �
1a1 � � �

2a2 � � � = 0 ; (26a)

~� � � 0; � � � 0 ; (26b)

~� � � � � = 0 ; (26c)

aT
1 ~� � = Ts; aT

2 ~� � = Ts ; (26d)

where� denotes the componentwise product. For the convex
QP (24) satisfaction of the KKT conditions (26) suf�ces for
~� � to be a global solution [37]. In the following, it is shown
how ~� � can be found by solving the KKT conditions (26).

First, it is noted that (26) can be split into two decoupled
sets of equations3

~� �
(4 � � 3:4� ) � z(4 � � 3:4� ) � � �

� 14 � � �
(4 � � 3:4� ) = 0 ; (27a)

~� �
(4 � � 3:4� ) � 0; � �

(4 � � 3:4� ) � 0 ; (27b)

~� �
(4 � � 3:4� ) � � �

(4 � � 3:4� ) = 0 ; (27c)
4�X

i =4 � � 3

~� �
i = Ts ; (27d)

where the value of� 2 f 1; 2g indicates the prediction horizon
step. Therefore, the two equation sets (27) can be solved
separately. By taking� = 1 as an example, (27a) can be
expanded to four scalar equations as

~� i = zi + � 1 + � i ; i 2 f 1; 2; 3; 4g : (28)

Combining (28) with (27b) and (27c), it yields

(~� i ; � i ) =

(
(0; � � 1 � zi ) if � 1 < � zi

(zi + � 1; 0) otherwise:
(29)

If there exists� 1 such that
P 4

i =1 ~� �
i = Ts—denoted as� �

1—
it follows that the KKT conditions (26) with� = 1 are
satis�ed. As a result, the solution~� �

(1:4) can be obtained

directly from (29). Speci�cally, based on (29),
P 4

i =1 ~� i can
be written as a piecewise linear continuous function of� 1

f (� 1) =
4X

i =1

~� i =

8
>>>>>>><

>>>>>>>:

0 if � 1 < � ~z1

~z1 + � 1 if � ~z1 � � 1 < � ~z2
...

4X

i =1

~zi + 4 � 1 if � ~z4 � � 1 ;

(30)

where~z includes the elements ofz sorted in a descending or-
der. Sincef (� 1) is either constant or increasing monotonically
and linearly with� 1, � �

1 can be found by examining the value

3The notation ~� �
(4 � � 3:4 � ) , z (4 � � 3:4 � ) , and � �

(4 � � 3:4 � ) indicates the
entries from4� � 3 up to 4� of ~� � , z , and� � , respectively.

Algorithm 2 Projection onto


1: function ~� � = P
 (z)
2: for � = 1 ; 2 do
3: ~z = sort( z(4 � � 3:4� ) ; descend)
4: ~� = � ~z
5: f (~� 1) = 0
6: for j = 2 to 4 do
7: f (~� j ) =

P j
i =1 ~zi + j ~� j

8: if f (~� j ) � Ts then

9: � �
� = ~� j � 1 + ( ~� j � ~� j � 1) (Ts � f ( ~� j � 1 ))

( f ( ~� j ) � f ( ~� j � 1 ))
10: break
11: else
12: if j = 4 then
13: � �

� = ( Ts �
P 4

i =1 ~zi )=4
14: break
15: end if
16: end if
17: end for
18: ~� �

(4 � � 3:4� ) = max f 04; z(4 � � 3:4� ) + � �
� 14g

19: end for
20: return ~� �

21: end function

of f (� 1) at its breakpoints~� i . From (30), it is evident that
f (� 1) has four breakpoints, i.e.,~� i = � ~zi for i 2 f 1; 2; 3; 4g.
Once a~� j is found such thatf (~� j � 1) � Ts andf (~� j ) � Ts,
then � �

1 is in the interval[~� j � 1; ~� j ] and can be obtained by
linear interpolation. If� �

1 is not found after all the breakpoints
are examined, then� �

1 is located in the interval[~� 4; + 1 ) and
it is equal to� �

1 = ( Ts �
P 4

i =1 ~zi )=4.
Once� �

1 and ~� �
(1:4) are obtained,� �

2 and ~� �
(5:8) can be found

by setting � = 2 and following the same procedure. The
proposed projection algorithm is summarized in Algorithm 2.

C. Gradient Projection Method for Direct MPC

To �nd the solution ~t � of problem (22), the proposed
gradient projection method searches along the steepest descent
direction from the current point~t � , i.e.,

~t � +1 = ~t � � � � g� ; (31)

whereg� = H ~t � � f is the gradient vector at~t � , � � 2 R+

is the step size, and� 2 N denotes the� th step of the solution
process. Following,~t � +1 is projected onto the feasible region

 by invoking Algorithm 2, i.e.,~� �

� +1 = P
 (~t � +1 ), where
P
 refers to the projection function provided in Algorithm 2.
Subsequently, the process continues from point~� �

� +1 by con-
sidering it as the next starting point in (31), i.e.,~t � +1 � ~� �

� +1 .
As can be understood, an important factor that affects the

rate of convergence of the gradient method is the step size� � .
In the classic steepest descent method this is chosen by exact
line search, i.e., by searching for the optimal point along the
steepest descent direction. However, it has been shown that
the rate of convergence of the classical method is slow and
it gets worse as the QP problem becomes ill-posed. As an
alternative, Barzilai and Borwein proposed a strategy—known
as the BB method—for choosing the step size [38], which



Algorithm 3 QP Algorithm for Direct MPC

1: function ~t � = GRADPROJ(H ,f , ~t 0, � 0, tol )
2: g0 = H ~t 0 � f
3: for � = 0 ; 1; : : : do
4: if kP
 (~t � � g� ) � ~t � k � tol then
5: ~t � = ~t �

6: break
7: end if
8: ~� �

� +1 = P
 (t � � � � g� )
9: ~t � +1 = ~� �

� +1
10: g� +1 = H ~t � +1 � f
11: � � +1 = (� ~t T

� � ~t � )=(� ~t T
� � g� )

12: end for
13: return ~t �

14: end function

offers several advantages over the classical method, such as
less computational effort, fast convergence, and less sensitivity
to ill conditioning [39], [40]. According to the BB step [38],
the step size in (31) is chosen as

� � +1 =
� ~t T

� � ~t �

� ~t T
� � g�

; (32)

where � ~t � = ~t � +1 � ~t � and � g� = g� +1 � g� . With (31)
and (32), the algorithm continuous in an iterative manner until
it ful�lls an optimization criterion. Speci�cally, the process
terminates whenkP
 (~t � � g� ) � ~t � k is within a predetermined
tolerance.

Based on the above, the complete algorithm for solving (22)
is summarized in Algorithm 3. The arguments of the algorithm
are the Hessian matrixH , and the vectorf , as de�ned
in (22) as well as the initial point~t 0 2 
 , the initial step
� 0, and the value of the tolerancetol . The initial point can
be chosen according to a warm-start strategy, e.g., based
on the previously computed solution~t � (k + 1) . Moreover,
in this work, as shown in Section IV-D,~t 0 is also utilized
for detecting unsuited switching sequencesU . As for the
initial step size� 0, it marginally affects the convergence of
the algorithm, since it is updated in every iteration of the
search process according to (32). On the other hand, the
tolerancetol can considerably affect the rate of convergence,
since a very small value can result in a slow convergence.
However, the exact solution is not necessary since the model
itself is not ideal. Hence, in this work,tol is set to 10� 6,
which means that the optimal switching application times~t �

are acceptable within a tolerance of1µs. Considering that
the sampling interval for the examined case study is a few
hundreds of microseconds, a solution with1µs tolerance is
accurate enough.

Finally, it is worth mentioning that the BB methods are
inherently non-monotonic, which means that the value of the
objective function may increase at some iterations. To tackle
this, a line search is required to prove the convergence, and
some studies, e.g., [41], have reported some cases that the BB
methods without line search fail to converge. However, this
happens rarely and only in large-scale problems. For small-
scale QPs, as the one presented in (22), the employed BB

method always converges ef�ciently without requiring a line
search. For more details about the line search strategy, see[39]
and references therein.

D. Detection of Unsuited Switching Sequences

As explained in Section III, the gradient-based direct MPC
scheme enumerates the feasible switching sequences and se-
lects the one that minimizes (16). According to the control
principle presented in Section III-A, each switching sequence
in one sampling intervalTs consists of four switch positions;
two of them correspond to zero vectors in the�� -plane—
applied at the beginning and end ofTs—and the other two
to adjacent active vectors—applied in between, see Fig. 2(a).
However, not all active vectors positively affect the track-
ing of the stator current reference. Such active vectors, and
consequently the corresponding switching sequences, can be
detected quickly by the proposed gradient projection method,
as explained below.4

To do so, consider one-step MPC and let the initial point be
~t 0 = [ Ts=2 0 0 Ts=2]. The steepest descent direction can be
obtained by calculating its gradient vectorg0 = H ~t 0 � f . If
this direction points to the region where~t has negative duration
time for an active vector, i.e., the second and third entriesof
~t , it can be concluded that this active vector will adversely
affect the system performance if applied to the inverter, thus
the associated switching sequence is suboptimal.

To allow the gradient projection to reach the region where
~t i < 0, the bound constraints are neglected so that therelaxed
feasible region is de�ned as


 0 := f ~t j
4X

i =1

~t i = Ts; ~t 2 R4g:

Then, one step is taken from the initial point~t 0 in the steepest
descent direction and projected onto the relaxed region, i.e.,
~t 1 = P
 0 (~t 0 � g0), whereP
 0 (z) is the function that projects
any vectorz onto 
 0. If the duration of an active vector in
~t 1 is negative, the associated switching sequence is discarded.
The projectionP
 0 (z), is computed as

minimize
~� 2 
 0

k~� � zk2
2 ; (33)

which can be easily solved by exploring its KKT conditions,
i.e.,

~� � � z � � � 14 = 0 ; (34a)
4X

i =1

~� �
i = Ts : (34b)

Speci�cally, since (34a) can be written as~� �
i = zi + � � ,

i 2 f 1; 2; 3; 4g, by inserting it into (34b), the solution of (33)
is given by� � = ( Ts �

P 4
i =1 zi )=4 and~� � = � � 14+ z. Hence,

~t 1 can be found with a simple one-step projection, enabling a
fast and accurate detection of unsuited switching sequences.

4An alternative to determine the “suitable” switching sequence is to utilize
the deadbeat solution of the control problem, i.e., the modulating signal that
a deadbeat controller would use. In doing so, the triangularsector in which
the modulating signal lies would provide the desired switching sequence,
see Fig. 3. However, such an approach can lead to suboptimal solutions [4,
Section VII], thus the proposed method is preferred since itguarantees
optimality.
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(b) Transient operation.

Fig. 6: Switching sequences selected by the detection method (blue circles)
and the globally optimal switching sequence (red cross).

The validity of the described method is examined in sim-
ulation for both steady-state and transient operation for the
drive system shown in Fig. 1 with the parameters given in
Tables II and III. Fig. 6(a) shows for one fundamental period
the switching sequencesUz , z 2 f 1; 2; : : : ; 6g, (see Table I)
considered as candidate solutions (shown as blue circles) by
the aforementioned method in steady-state operation. In the
same �gure, the optimal switching sequenceU � found after
solving all six QPs for all possible switching sequences is
also indicated (shown with a red cross). Moreover, the same
data are depicted in Fig. 6(b) for transient operation, namely
for a torque reference step-down—fromTe;ref = 1 to 0per
unit (p.u.)—and step-up—fromTe;ref = 0 to 1p.u.—change
at t = 4 ms andt = 13 ms, respectively. As can be seen, the
detection method selects one or two “suitable” switching se-
quences, with the globally optimal sequence always included.

V. PERFORMANCEEVALUATION

The performance of the proposed direct MPC scheme
is examined in the laboratory with a three-phase two-level
inverter driving an IM, as shown in Fig. 1. The inverter is
supplied by a stiff dc source. The real-time control platform
is a dSPACE SCALEXIO system, consisting of a4GHz Intel
XEON processor and a Xilinx Kintex-7 �eld-programmable
gate array (FPGA). Two three-phase two-level SEW MDX
inverters are used to control the IM and the load machine. The
experimental setup is shown in Fig. 7. The rated values of the
IM and the parameters of the system are given in Tables II
and III, respectively. Note that all results are shown in thep.u.
system.

A. Steady-State Operation

The steady-state performance of the drive system controlled
by the direct MPC scheme is examined while the IM is

A B C

D

E

F G

Fig. 7: Experimental setup of the electrical drive test bench. A: SEW inverter
for induction machine (IM), B: SEW inverter for load permanent magnet
synchronous machine (PMSM), C: dSPACE SCALEXIO real-time control
system, D: Interface, E: Oscilloscope, F: IM, G: PMSM.

TABLE II: Rated values of the induction machine.

Parameter Symbol SI Value
Rated voltage VR 380V
Rated current I R 5:73A

Rated stator frequency f sR 50Hz
Rated rotor speed ! mR 2880rpm

Rated power PR 3 kW

TABLE III: System parameters in the SI and the p.u. system.

Parameter SI (p.u.) symbol SI (p.u.) value
Stator resistance Rs (Rs ) 1:509 
 (0:0394)
Rotor resistance R r (R r ) 1:235 
 (0:0323)

Stator leakage inductance L ls (X ls ) 7:0 mH (0:0574)
Rotor leakage inductance L lr (X lr ) 7:0 mH (0:0574)

Mutual inductance L m (X m ) 232:5 mH (1:9077)
Number of pole pairs p 1

Dc-link voltage Vdc (Vdc ) 650V (2:0950)

operating at rated torque and nominal speed, i.e., the fun-
damental frequency isf 1 = 50 Hz, and the electromagnetic
torque reference is set equal toTe;ref = 1 p.u., as shown in
Fig. 8. Considering that the relationship between the switching
frequencyf sw and the sampling intervalTs is given by

f sw =
1

2Ts
; (35)

the sampling interval is chosen asTs = 123:4µs so that a
switching frequencyf sw of 4050Hz results. Fig. 8(a) shows
the three phase stator current measured by the oscilloscope
with a sampling frequency of50kHz, while its harmonic
spectrum is shown in Fig. 8(b). The current THD is5:80%,
relatively low considering the small total leakage reactance
of 0:11p.u. The current harmonics are mainly the sideband
harmonics caused by the switching nature of the converter.
Besides, some pronounced harmonics can be observed at low
frequencies, especially around1000Hz, i.e., the 17th and
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(b) Stator current harmonic spectrum. The THD is5:80%.
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(d) Electromagnetic torqueTe .

Fig. 8: Experimental results of direct MPC at steady-state operation,f sw =
4050Hz.

Time [ms]
0 5 10 15 20

� 1

� 0:5

0

0:5

1

(a) Three-phase stator currenti s;abc .

Frequency [kHz]
0 2 4 6 8 10

0

0:01

0:02

0:03

0:04

(b) Stator current harmonic spectrum. The THD is6:18%.
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(c) Stator �ux magnitude	 s .

Time [ms]
0 5 10 15 20

0

0:2

0:4

0:6

0:8

1

(d) Electromagnetic torqueTe .

Fig. 9: Experimental results of FOC at steady-state operation, f sw =
4050Hz.

19th harmonic. Such harmonics are mainly caused by the
slotting and saturation effects in the IM [42]. Finally, Figs. 8(c)
and 8(d) show the stator �ux magnitude and electromagnetic
torque, respectively. These values are estimated in dSPACE,
based on the machine model and the observer discussed in
Section III-D.

For comparison purposes, �eld-oriented control (FOC) with
proportional-integral (PI) controllers and SVM is also imple-
mented. The operating conditions and switching frequency are
the same as those of direct MPC, while the PI parameters are
tuned according to the modulus optimum method. As can be
seen in Fig. 9(a), the stator current is very similar to that of
the direct MPC scheme, but with a slightly higher ripple. This
is re�ected in the harmonic spectrum (see Fig. 9(b)), where
higher current distortions can be observed, with the current
THD being equal to6:19%. This is mainly due to fact that
the harmonics caused by the slotting and saturation effects
are more pronounced with FOC. This can be explained by
the fact that the PI-based FOC has less control bandwidth

so it cannot effectively remove these relatively high-order
harmonics. Conversely, MPC can suppress—to some extent—
those harmonics caused by the nonlinearities of the IM.

Furthermore, to gain more insight into how the direct
MPC scheme manipulates the converter switch positions, the
notion of the three-phase equivalent modulating signaldabc is
introduced. To this end, the single-phase equivalent modulating
signal is de�ned asdx = Ton;x =Ts, with x 2 f a; b; cg, where
Ton;x is the time interval within oneTs thatux = 1 . The three-
phase equivalent modulating signal is shown in Fig. 10 for
the proposed MPC scheme. In the same �gure the modulating
signal of FOC with SVM is depicted. As can be observed in
Fig. 10, the direct MPC scheme, although it does not employ
a modulator, achieves a very similar equivalent modulating
signal.

Finally, to further elucidate the performance of the proposed
controller, Fig. 11 depicts the current THD for switching
frequencies in the rangef sw 2 [750; 5250]Hz. As before,
the current THD produced by FOC is also shown. Moreover,
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(b) FOC.

Fig. 10: Three phase equivalent modulating signal of directMPC and
modulating signal of FOC at nominal steady-state operation, f sw = 4050 Hz.

I T
H

D
[%

]

f sw [kHz]
0:6 1:2 1:8 2:4 3 3:6 4:2 4:8 5:4

4

8

12

16

20

24

Fig. 11: Trade-off between current THD and switching frequency for the
proposed direct MPC (blue, solid line), FOC (black, dashed line), FCS-MPC1
(green, dotted line), and FCS-MPC2 (red, dash-dotted line).

to clearly highlight the bene�ts of the proposed direct MPC
strategy, the current THD achieved with two conventional
FCS-MPC methods is also reported. Speci�cally, the �rst FCS-
MPC method (referred to as FCS-MPC1) has the objective
function

J = ki s;ref (k + 1) � i s(k + 1) k1 ;

i.e., it does not penalize the control action and uses the`1-
norm, while the switching frequency is adjusted by modifying
the sampling intervalTs. The objective function of the second
FCS-MPC method (FCS-MPC2) is based on thè 2-norm,
penalizes the control effort, and uses the sampling interval
Ts = 50 µs, i.e.,5

J = ki s;ref (k + 1) � i s(k + 1) k2
2 + � u k� u abc(k)k2

2 :

As can be seen, Fig. 11 clearly shows the superior steady-
state performance of the proposed direct MPC scheme since
it achieves the lowest values of current THDI THD over the
whole range of the examined switching frequencies.

B. Transient Behavior

While operating at the same switching frequency as before
(i.e., f sw = 4050 Hz), the transient behavior of the examined

5The reader is referred to [4] for insights into the discusseddesigns of
FCS-MPC.
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(b) Electromagnetic torqueTe .

Fig. 12: Experimental results of direct MPC during a torque reference step-
down transient.
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(b) Electromagnetic torqueTe .

Fig. 13: Experimental results of direct MPC during a torque reference step-up
transient.

direct MPC scheme is tested during torque reference steps
from Te;ref = 1 to 0p.u. as well as fromTe;ref = 0 to 1p.u..
These cases are shown in Figs. 12 and 13, respectively. As a
comparison, Figs. 14 and 15 show the performance of FOC
for the same scenarios. For the torque reference step-down
case, the proposed direct MPC scheme smoothly regulates
the current—and thus the torque—to the new reference within
two sampling intervals, without any over- and/or undershoots,
see Fig. 12. FOC, on the other hand, suffers from a visible
undershoot in the torque, see Fig. 14. As for the torque
reference step-up case, the proposed direct MPC strategy
achieves a signi�cantly faster settling time of about2ms as
compared to the3ms required by FOC, see Figs. 13 and 15,
respectively.

For more insight into the dynamic behavior of the presented
direct MPC algorithm, Fig. 16 shows the equivalent modulat-
ing signal during the torque reference step changes in detail.
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Fig. 14: Experimental results of FOC during a torque reference step-down
transient.
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Fig. 15: Experimental results of FOC during a torque reference step-up
transient.

In a same fashion, Fig. 17 depicts the modulating signal with
FOC. At the torque reference step-down case, the direct MPC
method instantly pushes the application times of the switch
positions close to their limits and reverses the polarity of
the equivalent modulating signal, see Fig. 16(a), so that the
converter applies the switch positions that result in as fast a
response as possible for the optimal amount of time. As for
the torque step-up case, the MPC strategy fully utilizes the
available dc-link voltage (see Fig. 16(b)) so that the settling
time is only limited by the physical limits of the system. We
conclude that the proposed direct MPC algorithm inherits the
favorable dynamic behavior that characterizes direct control
schemes. As for the PI-based FOC, it also tries to reverse
the polarity of the modulating signal during the step-down
scenario, but it does not manage to do it as aggressively as
MPC, see Fig. 17(a). Moreover, during the step-up case, shown
in Fig. 17(b), FOC tries to fully utilize the available dc-link
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Fig. 16: Three-phase equivalent modulating signal of direct MPC at torque
reference steps.
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(b) Step-up case.

Fig. 17: Three-phase modulating signals of FOC at torque step reference steps.

voltage. In doing so, the modulating signal is saturated dueto
the employed anti-windup mechanism with saturation, but in
a less aggressive manner due to the integrating element of the
controller. Moreover, due to the fact that the controller (i.e.,
FOC) and modulator (i.e., SVM) are two decoupled entities
that act independently from each other, the best possible
dynamic performance is not guaranteed because the voltage
synthesized by SVM is different from the voltage commanded
by FOC [43]. As a result, the dynamics of FOC are slower,
as also shown in Fig. 15.

Another scenario for evaluating the transient behavior of a
controller is operation under speed changes. Since the focus
of this work is on the inner current control loop designed in
the framework of MPC, the load machine is used to impose
a speed ramp of around0:85p.u., while keeping the current
reference of the IM constant. As shown in Figs. 18 and 19,
the MPC algorithm achieves good reference current tracking
during these speed ramps.
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Fig. 18: Speed reference ramp (from1 to 0:15p.u.) with direct MPC.
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Fig. 19: Speed reference ramp (from0:15 to 1 p.u.) with direct MPC.

C. Computational Burden

The main computational burden of the direct MPC scheme
relates to the solution of the QP problem(s). Table IV sum-
marizes the average and maximum number of iterationsnit

required by the proposed QP algorithm to conclude to the
optimal solution of one QP, along with the corresponding
turnaround timet ta ;QP on dSPACE. In the same table, the
turnaround time of the whole control schemet ta ;tot is also
shown. This time includes, besides the time required to solve
the QP(s), the time needed for the analog-to-digital conversion
(ADC), the uplink and downlink communication as well as the
generation of the gating signals. As can be seen, the average
number of iterations to solve one QP is39:7 and the maximum
98. Considering that the optimization variable~t of each QP
problem is eight-dimensional, while eight boundary conditions
exist along with two equality constrains, the required number
of iterations is modest. Moreover, since each iteration of the
proposed QP algorithm requires little computational effort, the

TABLE IV: Number of iterations required by the QP algorithm and the
turnaround times on dSPACE, wheret ta ;QP corresponds to solving one QP,
and t ta ; tot to executing the whole control algorithm.

Number of Turnaround time Turnaround time
iterationsn it t ta ;QP (µs) t ta ; tot (µs)

Average 39:7 16:9 28:7
Maximum 98 42:6 71:3
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Fig. 20: Probability distribution of the number of iteration steps required by
the QP algorithm. The average number of iterations is indicated by the solid
vertical line. The95, 98, and 99 percentiles are shown as dashed, dashed-
dotted, and dotted vertical lines, respectively.
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Fig. 21: Probability distribution of the turnaround timet ta ; tot . The average
turnaround time is indicated by the solid vertical line. The95, 98, and 99
percentiles are shown as dashed, dashed-dotted, and dottedvertical lines,
respectively.

TABLE V: The maximum turnaround timet ta ;max of the four discussed
control algorithms running on dSPACE.

FOC FCS-MPC1 FCS-MPC2 Direct MPC
Turnaround time

16:6 16:9 17:1 71:3
t ta ;max (µs)

maximum turnaround time of the proposed QP algorithm, i.e.,
t ta ;QP , is as little as42:6µs. Furthermore, since the unsuited
switching sequences can be effectively detected with only a
few computations, the maximum turnaround time of the whole
control scheme, i.e.,t ta ;tot , is only 71:3µs. In addition, the
probability distribution of the number of iterationsnit and the
turnaround timet ta ;tot are shown in Figs. 20 and 21, respec-
tively. As shown, in more than98%cases, the turnaround time
t ta ;tot is less than50µs. This indicates that the proposed QP
solver manages to solve the necessary number of QPs in real
time very quickly and within the available time, as de�ned
by the chosen sampling interval ofTs = 123:4µs, thanks
the fast projection algorithm and the BB method discussed
in Section IV.

Finally, the maximum (i.e., worst-case scenario) turnaround
times t ta ;max of the four discussed control algorithms, i.e.,
the proposed direct MPC scheme, FOC, FCS-MPC1 and
FCS-MPC2, are summarized in Table V. As can be seen,
the superior performance of the proposed algorithm comes
at a cost of increased computational demands. It is worth



mentioning, however, that, if needed, the turnaround time of
the proposed control scheme can be signi�cantly reduced, e.g.,
by decreasing the horizon to one step and/or by manipulating
the maximum number of iteration steps, as can be deduced
from Fig. 20. Nevertheless, such a reduction in the computa-
tional cost would occur at the expense of performance, i.e.,a
somewhat increased stator current THD.

VI. CONCLUSIONS

This paper proposed a computationally ef�cient QP solver
that enabled the real-time implementation—and subsequent
experimental evaluation—of the direct MPC scheme initially
proposed in [24]. The proposed QP solver, by exploiting the
speci�c feasible set of the QP problem underlying MPC,
performs the projection onto it very quickly, which allows
one to �nd the optimal solution with a relatively few number
of iterations. Moreover, the proposed algorithm can exclude
suboptimal solutions at a very early stage of the optimization
process, thus greatly alleviating the associated computational
effort.

In contrast to conventional FOC, the discussed direct MPC
scheme directly manipulates the converter switch positions so
that it can achieve short settling times during transients,on
par with deadbeat control. However, thanks to the adopted
control principles, and despite the absence of a modulator,the
proposed direct MPC algorithm manages to achieve a constant
switching frequency with a discrete harmonic spectrum. As a
result, low current distortions are produced during steady-state
operation. As shown for a two-level inverter driving an IM,
the proposed direct MPC strategy achieves both lower current
THD at steady-state operation and better dynamic behavior
during transients than a conventional linear controller with a
modulator, namely FOC with SVM.

APPENDIX

The vectorr and matrixM in (13) are

r =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

i s;ref (t0) � i s(t0)

i s;ref (t0) � i s(t0)

i s;ref (t0) � i s(t0)
�( i s;ref (Ts) � i s(t0) � m (t3(k))Ts)

i s;ref (Ts) � i s(t0)
i s;ref (Ts) � i s(t0)

i s;ref (Ts) � i s(t0)
�( i s;ref (2Ts) � i s(t0) � m (t3(k + 1))2 Ts)

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

and

M =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

m t 0 02 02 02 02 02

m 0 m t 1 02 02 02 02

m 0 m 1 m t 2 02 02 02

� m 0 � m 1 � m 2 02 02 02

m 0 m 1 m 2 m �t 0
02 02

m 0 m 1 m 2 m �0 m �t 1
02

m 0 m 1 m 2 m �0 m �1 m �t 2

� m 0 � m 1 � m 2 � m �0 � m �1 � m �2

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

with

m t i = m (t i (k)) � m ref (k)

m �t i
= m (t i (k + 1)) � m ref (k + 1)

m i = m (t i (k)) � m (t i +1 (k))

m �i = m (t i (k + 1)) � m (t i +1 (k + 1))

wherei 2 f 0; 1; 2g andt0(k + 1) = Ts.
The vector~r and matrix ~M in (20) are

~r =

2
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i s;ref (t0) � i s(t0)

i s;ref (t0) � i s(t0)

i s;ref (t0) � i s(t0)
� (i s;ref (t0) � i s(t0))

i s;ref (t0) � i s(t0)
i s;ref (t0) � i s(t0)
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~m i = m (t i (k)) � m ref (k))

~m i � = � ~m i

~m �i = m (t i (k + 1)) � m ref (k + 1))

~m �i �
= � ~m �i

wherei 2 f 0; 1; 2; 3g.
The matrixT in (23) is

T =

"
~I 03 03� 3 03

03� 3 03 ~I 03

#

;

where ~I is

~I =
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6
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1 0 0
1 1 0

1 1 1
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