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Switching Frequency Limitation with Finite Control
Set Model Predictive Control via Slack Variables

Luca M. Hartmann, Orcun Karaca, Tinus Dorfling, Tobias Geyer

Abstract—Past work proposed an extension to finite control set
model predictive control to simultaneously track both a current
reference and a switching frequency reference. Such an objective
can jeopardize the current tracking performance, and this can po-
tentially be alleviated by instead limiting the switching frequency.
To this end, we propose to limit the switching frequency in finite
control set model predictive control. The switching frequency is
captured with an infinite impulse response filter and bounded
by an inequality constraint; its corresponding slack variable is
penalized in the cost function. To solve the problem efficiently, a
sphere decoder with a computational speed-up is presented.

Index Terms—Power electronics, model predictive control,
integer optimization, power conversion.

I. INTRODUCTION

Given the developments in mathematical optimization
techniques and their applications on embedded systems,
model predictive control (MPC) has established itself as a
promising control methodology in power conversion systems,
where the system time constants are well below 1ms [1]–[5].
Several different variants of MPC have been developed
for converter control. Among those, finite control set MPC
(FCS-MPC) has gained a lot of attention for its advantages,
such as its intuitive design, simple implementation, and high
dynamic performance.

FCS-MPC achieves regulation of the states along their
references by directly manipulating the switch positions of
a power electronic converter. Since the switch positions are
discrete, the resulting optimization problem is an integer
program. Its first variants utilized a horizon of one step and
an exhaustive enumeration to solve the underlying integer
program [6], [7]. Whenever a linear prediction model is
available, an efficient branch-and-bound algorithm called the
sphere decoder can be adopted [8]–[10]. This enables the use
of long horizons within short sampling intervals, which can
bring performance benefits to different MPC variants, e.g.,
increasing the closed-loop stability margin [11]–[13].

One of the main shortcomings of FCS-MPC is the tuning of
its variable switching frequency, which is strongly correlated
with the switching losses of the semiconductors [14], [15].
Most commonly, the control effort is penalized with the aim
to reduce the average switching frequency. The tuning of this
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penalty to attain a particular average switching frequency is
known to be sensitive to the other control parameters and
the operating point, which greatly complicates the tuning
task. Without any switching penalty, on the other hand, the
switching frequency would be limited only by the choice of
the sampling interval [16] (see [17, Ch. 4] for an empirical
study), rendering it similar to a deadbeat-type controller. To
avoid the tuning process altogether, alternative MPC methods
have been proposed to set the switching frequency directly
by fixing the number of possible switching transitions in a
given time interval, see [18]–[22] and the references therein.
However, these modified controllers differ significantly from
the original FCS-MPC method, and thus they are considered
out of scope for this paper.

To control the switching frequency of FCS-MPC, the au-
thors in [23] have shown that the penalty term can be replaced
with a more meaningful term: a switching frequency tracking
term. A second-order infinite impulse response filter can be
utilized to capture the predicted switching frequency through-
out the horizon. Even more importantly, this modification does
not imply any major changes to the FCS-MPC formulation.

The current tracking performance generally improves with
an increase in the switching frequency. Yet, this general trend
does not necessarily hold for all cases, for example, there
exist certain time instant, in particular during transients, where
a momentary decrease in switching frequency could help
improve current tracking. In such cases, when using the formu-
lation proposed in [23], the two tracking objectives contradict
each other. However, a switching frequency lower than a cer-
tain limit is in fact not a concern, since it is used as a surrogate
to limit the switching losses or even the device temperatures.
To this end, the main contribution of this paper is to formulate
an FCS-MPC method that limits the switching frequency. This
will be achieved by penalizing the slack variable correspond-
ing to a constraint that upper bounds the switching frequency.

Solving FCS-MPC with hard or soft state constraints is in
fact rather straightforward in the case of exhaustive enumera-
tion. However, this is largely an unsolved problem when using
the sphere decoder. As mentioned before, the sphere decoder is
only applicable to optimization problems with linear prediction
models. The prediction model for the slack variable of the
switching frequency constraint has a nonlinear input-output
relation. This nonlinearity is due to a max operator in its output
function and an absolute value operator in its state update.
One of the first attempts to include constraints (in particular,
current constraints) in the sphere decoder has been made in
[24], [25]. The authors have proposed an algorithm to map the
state constraints to the input constraints, if the state itself has
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Fig. 1: Grid-connected 3L-NPC converter.

a linear prediction model. A more recent work by [26] took an
entirely different perspective by working with linear Gaussian
models and constraints expressed in terms of Gaussian priors.
However, this approach comes with a loss in optimality. In-
stead, the approach in this paper will augment the input vector
with the slack variables to then formulate the corresponding
sphere decoding algorithm, resembling the approach in [27]
that included the neutral-point dynamics in FCS-MPC. More-
over, we will provide a computational speed-up to this sphere
decoder by exploiting a provable lower bound that incorporates
the prediction model of the slack variable we are interested in.

Our contributions are as follows. We propose an FCS-MPC
method that limits the switching frequency by penalizing slack
variable of a constraint on the switching frequency. We for-
mulate a sphere decoder that utilizes slack variables. Finally,
a significant computational speed-up is achieved by exploiting
a lower bound on the future cost to be incurred from the slack
variables corresponding to the switching frequency constraints.

II. PRELIMINARIES

Consider a 3-level neutral-point-clampled (3L-NPC) con-
verter connected to the grid, as in Figure 1.1 The half dc-link
voltages Vdc

2 are realized by ideal voltage sources, and the
neutral-point-potential is fixed to zero; its balancing is out of
scope, we kindly refer to [27], [28]. The grid is modeled with
an RL-load in series with an infinite bus voltage. We assume
all grid parameters and states are known. The grid voltage is
measured or estimated, and its future values are predicted by
assuming it is an ideal voltage source.

Here, the converter voltages are denoted by vc =
[vc,a vc,b vc,c]

⊤ ∈ {−Vdc

2 , 0, Vdc

2 }
3. The vectors iabc =

[ia ib ic]
⊤ and vg = [vg,a vg,b vg,c]

⊤ represent the current
and the grid voltage, respectively. Three-phase variables in the
abc-coordinates are transformed into ξαβ in the stationary αβ
reference frame by ξαβ = Kξabc. The inverse operation is
denoted by ξabc = K−1ξαβ . The matrices K and K−1 are
defined by the Clarke transformation and its pseudo-inverse,
K = 2

3

[
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2
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3
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3
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]
, and K−1 = 3

2K
⊤. The subscript αβ

is dropped from ξαβ(k), unless stated otherwise.

A. Physical system model
The continuous-time current dynamics for Figure 1 are:

diαβ(t)

dt
= −R

L
I2iαβ(t) +

1

L
Kvc,abc(t)−

1

L
Kvg(t),

1The control methods under consideration are applicable to any system
governed by linearized dynamics (e.g., induction machines as in [23], with or
without output filtering stages [25]).
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Fig. 2: Block diagram of FCS-MPC with switching frequency
estimation (EST).

with the 2×2 identity matrix I2, the converter voltage
vc,abc(t) = Vdc

2 u(t), and the switch position u(t) =
[ua(t) ub(t) uc(t)]

⊤ ∈ {−1, 0, 1}3. Using exact Euler dis-
cretization, the discrete-time model becomes

x(k + 1) = Ax(k) +Bu(k) +Dvg(k),

y(k) = Cx(k),
(1)

where x = iαβ is the state, y the output, Ts the control
sampling interval, and k ∈ N the discrete-time index.

B. Switching frequency estimation

The switching frequency at time step k, fsw(k), is defined
as the number of on- or off-transitions averaged over the
number of semiconductor devices and divided by the sampling
interval. As discussed in [23], a discrete-time second-order
infinite impulse response (IIR) filter can be utilized to
estimate the device switching frequency:

xsw(k + 1) =

[
a1 1− a1
0 a2

]⊤
︸ ︷︷ ︸

Asw

xsw(k) +
1− a2
12Ts

1 0
1 0
1 0

⊤

︸ ︷︷ ︸
Bsw

p(k),

ysw(k) = fsw(k) = [0 1]xsw(k) = Cswxsw(k).

(2)

Here, a1, a2 ∈ [0, 1] are the tuning parameters, and
p(k) = |∆u(k)| is the element-wise absolute value of the
three-phase switching transition ∆u(k) = u(k) − u(k − 1).
The filtering window increases and the bandwidth reduces as
a1 and a2 are set closer to 1, see [29].

C. FCS-MPC for fsw tracking

The switching frequency tracking FCS-MPC (FT-MPC)
of [23] is an MPC algorithm with a prediction horizon of
length Np ∈ N, following the block diagram representation
in Figure 2. The FT-MPC differs from the conventional
FCS-MPC in [9] by tracking both the current reference and
the switching frequency reference.

Define an augmented system with state xT(k) =
[x(k)⊤ xsw(k)

⊤]⊤, input uT(k) = [u(k)⊤ p(k)⊤]⊤, and
output yT(k) = [y(k)⊤ ysw(k)]

⊤. The resulting dynamics are
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xT(k+1) = ATxT(k)+BTuT(k)+DTvg(k), yT(k+1) =
CTxT(k + 1), where AT, BT, CT, and DT are defined
according to (1) and (2). In the remainder, for any vector ξ(k),
we also let Ξ(k) = [ξ(k)⊤ ξ(k+1)⊤ . . . ξ(k+Np− 1)⊤]⊤

denote its full-horizon vector for the horizon Np.
FT-MPC solves the following optimization problem at each

time step k:

min

k+Np−1∑
ℓ=k

||y∗
T(ℓ+1)−yT(ℓ+1)||2QT

+λu||∆u(ℓ)||22

s.t. xT(ℓ+1) = ATxT(ℓ)+BTuT(ℓ)+DTvg(ℓ),∀ℓ,
yT(ℓ+1) = CTxT(ℓ+1),∀ℓ,
u(ℓ) ∈ {−1, 0, 1}3,∀ℓ,

(3)

where ||Ξ||2Q = Ξ⊤QΞ refers to the Mahalanobis norm for a
given Q ≻ 0, ξ∗ denotes the reference of a vector ξ, and ℓ ∈ N
is used to iterate over the prediction horizon. We have QT =
diag([1 1 λsw]), which uses the relative switching frequency
penalty λsw > 0 as a trade off between current and switching
frequency tracking. The switching penalty λu > 0 is set to be
very small to not interfere with the switching frequency track-
ing. It is used to guarantee the positive-definiteness of the Hes-
sian, shown explicitly in Appendix A. After solving (3) for its
optimal solution Uopt

T (k) = [uT(k)
⊤ uT(k+1)⊤ . . . uT(k+

Np−1)⊤]⊤, the FT-MPC applies then the first input uopt
T (k).

To solve the FT-MPC in real-time, a sphere decoder
similar to [8], [27] can be deployed. The sphere decoding
algorithm is a branch-and-bound technique applicable to
integer least squares (ILS) problems2 and is far more efficient
than an exhaustive enumeration. The ILS reformulation of the
FT-MPC and the algorithm are relegated to Appendix A. Note
that these were previously not derived or provided in [23].

III. FCS-MPC FOR fsw LIMITING VIA SLACK VARIABLES

This section introduces switching frequency limiting
FCS-MPC (FL-MPC). We introduce a switching frequency
constraint with the slack variable

s(ℓ) = max{fsw(ℓ)− f∗
sw, 0}, (4)

where f∗
sw is the upperbound on the switching frequency,

and penalize the slack variable in the cost function. We then
develop a sphere decoder for solving the underlying problem
and discuss a significant computational speed-up by utilizing
lower bounds on this new cost. The FL-MPC block diagram
is identical to that of FT-MPC depicted in Figure 2.

A. Problem formulation

Similar to the p(k) variable, the slack variable s(k) also
has a nonlinear output relation to the switch positions, which
can be inferred from the definition in (4). The nonlinearity
originates from both the max operator and also the absolute
value operator that is used to obtain the switching transition
variable p(k) appearing in (2). Thus, it would later not be
possible to obtain an ILS reformulation unless the slack
variable is included in the input vector.

2The ILS problem is known to be NP-hard [30].

To this end, we augment the input vector as uS(k) =
[u(k)⊤ s(k + 1)]⊤. Given xS(k) = x(k) and yS(k) = y(k),
the new dynamics are xS(k + 1) = ASxS(k) +BSuS(k) +
DSvg(k) and yS(k) = CSxS(k). Here, AS, BS, CS, and DS

can be defined simply by the physical system matrices in (1).
We formulate the FL-MPC’s optimization problem as

min

k+Np−1∑
ℓ=k

||y∗
S(ℓ+ 1)− yS(ℓ+ 1)||2QS

+ λsw||s(ℓ+ 1)||22 + λu||∆u(ℓ)||22
s.t. xS(ℓ+ 1) = ASxS(ℓ) +BSuS(ℓ) +DSvg(ℓ),∀ℓ,

yS(ℓ+ 1) = CSxS(ℓ+ 1),∀ℓ,
xsw(ℓ+ 1) = Aswxsw(ℓ) +Bswp(ℓ),∀ℓ,
s(ℓ+ 1) = max {Cswxsw(ℓ+ 1)− f∗

sw, 0} ,∀ℓ,
u(ℓ) ∈ {−1, 0, 1}3,∀ℓ,

(5)

where QS = I2 and In ∈ Rn×n denotes the identity matrix.
Observe that the switching frequency penalty now relates to
the penalization of the slack variable.

We reformulate (5) as an ILS problem. The full-horizon
vector Y S(k + 1) is a function of US(k), xS(k), and vg(k),
i.e., Y S(k + 1) = ΓSxS(k) +ΥSUS(k) +ΨSvg(k).

Other full-horizon variables S(k + 1) and ∆US(k) are
defined as ∆US(k) = ΠSUS(k) − ESuS(k − 1), and
S(k + 1) = LSUS(k), where ΓS, ΥS, ΨS, ΠS, ES, LS,
and Q̄S are defined in Appendix B following the procedure
originally described in [8].

The objective in (5) is equivalent to

J(US(k)) = ||Y ∗
S(k + 1)− Y S(k + 1)||2Q̄S

+ λsw||S(k + 1)||+ λu||∆US(k)||,

and can be regrouped as

J(US(k)) = US(k)
⊤HSUS(k) + 2ΘS(k)US(k) + θS(k),

where HS = Υ⊤
S Q̄SΥS + λswL

⊤
S LS + λuΠ

⊤
S ΠS is called

the Hessian and ΘS(k) = ((ΓSxS(k) − Y ∗
S(k + 1) +

ΨSvg(k))
⊤Q̄SΥS−λu(ESuS(k−1))⊤ΠS)

⊤)⊤ is the linear
part of the cost. The cost term θS(k) is independent of the deci-
sion variable US(k) and, therefore, gets discarded, and instead
gets replaced by another constant term to complete the squares.

The matrices ΥS, ΠS, and LS are constructed so that
λswL

⊤
S LS+λuΠ

⊤
S ΠS ≻ 0 and Υ⊤

S Q̄SΥS ⪰ 0. Consequently,
it holds for the Hessian that HS ≻ 0, and there exists a
generator matrix V S such that V ⊤

S V S = HS. The matrix
V S is lower triangular, and every fourth row has only the
slack variable penalty as a diagonal entry.

With the definitions above, (5) is equivalent to the following
ILS problem:

min
US(k)

||ÛS(k)− V SUS(k)||22

s.t. u(ℓ) ∈ {−1, 0, 1}3,∀ℓ,
s(ℓ) = h̃ℓ(Upast(ℓ)),∀ℓ > k.

(6)

where ÛS(k) = −V SH
−1
S ΘS(k) is the unconstrained so-

lution to (5), i.e., the solution of (5) without integer and
slack constraints. To simplify the presentation, the slack
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variables’ functional dependence on the inputs is captured
by the functions h̃ℓ : R3(ℓ−k) 7→ R≥0, resulting in the
constraint s(ℓ) = h̃ℓ(Upast(ℓ)),∀ℓ > k, where Upast(ℓ) =
[u(k)⊤ . . .u(ℓ−1)⊤]⊤,∀ℓ > k denotes the past inputs.3 These
functions depend on the initial states, e.g., xsw(k), and can be
evaluated iteratively via the constraints in (5) for different ℓ.
For the slack variables s(ℓ), corresponding entries of the
unconstrained solution ÛS are 0, since the constraint s(ℓ) =
h̃ℓ(Upast(ℓ)) is not imposed on the unconstrained solution.

B. Sphere decoder

The objective in (6) relates to the squared distance between
the unconstrained solution ÛS(k) and the optimization
variable US(k) in the space of the lattice defined by V S.
Given a feasible initial solution US,ini(k) with the objective
value d2ini, the sphere decoder systematically searches for
a better feasible solution within a sphere with the initial
squared radius of ρ2 = d2ini. The sphere decoder shrinks the
squared radius ρ2 whenever it finds a better solution US(k).
Through this process, suboptimal solutions are discarded until
only the optimal solution Uopt

S (k) is left inside the sphere.
The exploration procedure of the sphere decoder for a better

solution relies on the structure of the squared distance d2.
Let Ξi be the ith row vector of a matrix Ξ, and φi be the
ith element of a vector φ, then

d2 =

Np∑
i=1

∣∣∣∣∣∣ÛS,i − V S,iUS(k)
∣∣∣∣∣∣2
2
.

Instead of directly calculating d2 for the full candidate solution
vector, we can iteratively compute an incremental squared
distance term d2l , where l ∈ {1, . . . , 4Np} and d24Np

= d2.
For this, we exploit the lower triangular structure of V S, i.e.,

d2l =

l∑
i=1

ÛS,i −
i∑

j=1

VS,i,jUS,j(k)

2

, (7)

where Ξi,j denotes the element in the ith row and jth column
of a matrix Ξ. The incremental squared distance d2l allows
the sphere decoder to avoid evaluating the objective function
at once for a fully-determined candidate solution. Instead, we
can determine the entries of the candidate vector one by one,
starting at time step k. We can then increment the squared
distance accordingly. This way, a large set of candidates
can be discarded whenever the incremental distance already
exceeds the sphere’s current radius, d2l > ρ2, before all the
entries are determined.

With this in mind, the sphere decoder can be formulated
as described in Algorithm 1. When starting the recursive
algorithm, we let Uopt

S = U ini
S (k), ÛS = ÛS(k), d2l = 0,

l = 1, ℓ = k, uprev
S = uS(k − 1), and ρ2 = ρ2ini(k). The

initial solution U ini
S (k) can be obtained with an educated

guess (i.e., a shifted version of the previous optimal solution
Uopt

S (k−1)), the Babai estimate (e.g., see [10]), or the best of

3This change in notation highlights that the sphere decoder in the next
subsection will in fact be applicable to slack variables of constraints with any
nonlinear relationship to the past inputs Upast(ℓ).

Algorithm 1 Modified sphere decoder for FL-MPC

1: Function: FLSphDec
2: Input: US, Uopt

S , ÛS, ρ2, d2l−1, d2
ℓ , l, ℓ, uprev, xsw(ℓ)

3: Output: Uopt
S , ρ2

4: if mod (l, 4) ̸= 0 then
5: U ← {−1, 0, 1}
6: else
7: uprev ← u(ℓ)
8: ℓ← ℓ+ 1
9: Compute xsw(ℓ), s(ℓ) and d2

ℓ , and let U ← s(ℓ)
10: end if
11: for all u ∈ U do
12: US,l ← u

13: d2l ← d2l−1 +
(
ÛS,l −

∑l
j=1 VS,l,jUS,j(k)

)2

14: if d2l + d2
ℓ < ρ2 then

15: if l < 4Np then
16: New recursion: [Uopt

S , ρ2] ← FLSphDec( US,
Uopt

S , ÛS, ρ2, d2l , d2
ℓ , l + 1, ℓ, uprev, xsw(ℓ))

17: else
18: Uopt

S ← US and ρ2 ← d2l
19: end if
20: end if
21: end for

both. Additionally, we need to pre-compute the corresponding
slack variables in U ini

S (k).
A tree of depth 4Np, and levels denoted by l, representing

all possible solutions of US(k), is traversed. Every first three
nodes, i.e., mod (l, 4) ̸= 0, decide upon the switch position
u(ℓ), whereas every fourth node computes the corresponding
slack variable s(ℓ + 1). This can be done by evaluating
functions h̃ℓ. For (6), this is done with the definition of the
slack variable in (4) after iteratively computing xsw(ℓ + 1)
via (2). Note that the complexity introduced by the fourth
node is low, since it is a simple computation without requiring
any exploration. Note also that the slack variable prediction
models are not explicitly included when deriving V S, but
remain hidden in the computation in Line 9. A simple lower
bound for the slack variable cost to be incurred in the future
steps within the prediction horizon is given by d2ℓ = 0. In the
next subsection, to cut branches as early as possible, we will
provide a tighter lower bound d2bound,ℓ. This bound will be
derived based on the prediction model of the slack variable
for the switching frequency constraint. The algorithm can be
used with either of d2ℓ = 0 or d2ℓ = d2bound,ℓ.

After picking the value for the input, the incremental
cost (7) at level l is compared with the sphere’s squared
radius ρ2, i.e., the current best solution. The tree is further
traversed if d2l + d2l < ρ2 still holds. Otherwise, the node
with its sub-tree is pruned.

This procedure is repeated until either all branch values of
a node are cut or a solution with d24Np

< ρ2 is found at a
leaf node. If d24Np

< ρ2, then the sphere radius is reduced to
ρ2 = d24Np

and Uopt
S is updated. The algorithm starts back-

tracking. If a new solution with cost (d′i)
2 < ρ2 is found, the

algorithm traverses the new branch again. The optimal solution
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Uopt
S (k) = Uopt

S is found once the last branch has been cut
and the node at l = 1 is reached.

C. Lower bound for computational speed-up

Consider ℓ < k + Np, since otherwise there is no future
cost to be incurred by the slack variable. Let

JS(ℓ) = λsw

k+Np−ℓ∑
n=1

||max(Cswxsw(ℓ+n)− f∗
sw, 0)||22, (8)

denote the cost incurred from the slack variable (strictly) after
time step ℓ if generic inputs u(ℓ − 1 + n), n ∈ {1, . . . , k +
Np − ℓ}, are used for the rest of the horizon. We show that
there exists a lower bound d2

bound,ℓ ≤ JS(ℓ), which is often
nontrivial, i.e., d2bound,ℓ > 0, and can simply be computed
from the already determined state variable xsw(ℓ) in step ℓ.
Intuitively, this will originate from the case where no more
switching occurs in the remainder of the prediction horizon of
the algorithm.

Proposition 1. Given ℓ < k +Np, define

d2
bound,ℓ = λsw

k+Np−ℓ∑
n=1

||max(CswA
n
swxsw(ℓ)− f∗

sw, 0)||22.

We have that d2
bound,ℓ ≤ JS(ℓ).

Proof: Observe that we obtain the switching state xsw(ℓ+
n) in a sequential manner, i.e.,

xsw(ℓ+ n) = An
swxsw(ℓ) +

n−1∑
j=0

Aj
swBsw|∆u(ℓ+ j)|.

We have that

An
swxsw(ℓ) ≤ An

swxsw(ℓ) +

n−1∑
j=0

Aj
swBsw|∆u(ℓ+ j)|,

due to non-negativity of the term on the right. Moreover,
max((·) − f∗

sw, 0) is a non-negative and a non-decreasing
operator.

Invoking these two observations, the bound d2
bound,ℓ below

obtained by assuming no future switchings can be shown to
provide a lower bound to (8), that is, the slack variable cost to
be incurred in the future steps for any generic future inputs:

d2bound,ℓ = λsw

k+Np−ℓ∑
n=1

||max(CswA
n
swxsw(ℓ)− f∗

sw, 0)||22

≤ λsw

k+Np−ℓ∑
n=1

||max(Cswxsw(ℓ+ n)− f∗
sw, 0)||22

= JS(ℓ).

This concludes the proof.

IV. CASE STUDIES

We benchmark the FL-MPC against FT-MPC. We
showcase the benefits of FL-MPC in common test cases such
as steady-state current tracking and power ramp-ups. We also
demonstrate the controllers during changes in the switching

TABLE I: Simulation Parameters

Physical System Controllers Simulation
L 0.266pu Np 5 Tsim 0.5 µs
R 0.015pu a1 0.99 avisual

1 0.995
Vg 1pu a2 0.99 avisual

2 0.995
Vdc 1.9pu λu 13× 10−3

f1 50Hz λsw 60
Tc 100 µs

TABLE II: Simulation results; Current TDD and average
switching frequency f̄sw for the steady-state simulation.

FT-MPC FL-MPC Improvement [%]
Current TDD [%] 4.95 4.70 5.1

Avg. sw. frequency [Hz] 253 248 -

TABLE III: Simulation results; Errors eI,FT and eI,FL for the
power ramp and the switching frequency step-up.

eI,FT [%] eI,FL [%] Improvement [%]
Power ramp-up 6.8 6.1 9.8

fsw step 8.8 3.9 56
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(b) Currents over a fundamental

Fig. 3: Steady-state operation.

frequency reference to showcase the impact of the different
objective functions.

For the system presented in Section II, the parameters are
shown in Table I. Here, Tsim refers to the simulation step
size, avisual

1 and avisual
2 are used for plotting purposes. The

controller’s current tracking performance is evaluated with the
current total demand distortion (TDD). The current TDD is
well-suited for steady-state measurements, however, it is less
applicable for evaluating the current tracking performance over
short intervals during transients. Hence, we define the 2-norm
of the current tracking error:

e2I =
1√
2T

t0+T∑
t=t0

||x∗(t)− x(t)||22.

The average switching frequency f̄sw is defined as

f̄sw =
1

T

t0+T∑
t=t0

fsw(t).

The two controllers are tuned with exactly the same
parameters λsw and λu to ensure a fair comparison that focuses
solely on the effect of a change from a switching frequency
tracking objective to a switching frequency limiting objective.

We first perform a steady-state simulation for 1.5 s (i.e.,
75 fundamental periods). An outer controller generates a
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Fig. 4: Current transients.

current reference, injecting to the grid P = 1pu, Q = 0pu.
We initialize the measurement at t0 = 0.5 s and T = 1 s.
Considering typical medium voltage applications, we choose a
reference of f∗

sw = 250Hz. In the steady-state, we measure an
average switching frequency of f̄sw,FT = 253Hz for FT-MPC
and f̄sw,FL = 248Hz for FL-MPC. The difference in average
switching frequencies is due to the different objectives and
it is visualized in Figure 3a. The current TDD measurement
is provided in Table II and shows a 5.1% improvement for
the FL-MPC over the FT-MPC at a lower average switching
frequency. To justify choosing the same parameters λsw and
λu for both controllers, we varied these two parameters for
FT-MPC and verified that it cannot achieve a TDD similar
to FL-MPC while being close to f∗

sw = 250Hz. For example,
for λu = 8× 10−3 and λsw = 45, we obtained TDD= 4.90%
and f̄sw,FT = 255Hz, whereas for λu = 17 × 10−3 and
λsw = 75, we obtained TDD= 5.02% and f̄sw,FT = 252Hz.
Finally, Figure 3b shows the currents over a fundamental
during steady-state.

Similar improvements can also be observed when applying
an active power ramp. Let t0 = 1.205 s, and consider one
fundamental period T1 = 1

f1
length. The ramp is initialized at

exactly t0 = 1.205 s with P = 0.3 pu and ends after one fun-
damental period at P = 1pu, while Q = 0pu. The simulation
results with the improved current tracking performance of the
FL-MPC over FT-MPC are shown in Figure 4a and Table III.
Even though it is not shown explicitly with a plot in Figure 4,
note that FL-MPC lowers the switching frequency during
a ramp, which might explain the performance improvement
shown in Table III. Such a difference in switching frequency
has not been observed during the power step. These different
scenarios show that FL-MPC is at least as good, and if not
better, in tracking a current reference when compared to
FT-MPC. This is not surprising, considering that FT-MPC
might unnecessarily prioritize switching frequency tracking.

Next, though it is not realistic, to showcase an obvious
case of current tracking improvement, we apply a step in
the switching frequency reference. The simulation results are
depicted in Figure 5. Here, the FT-MPC realizes a faster step
than FL-MPC in terms of switching frequency. We initialize
the measurement at t0 = 0.4 s and measure one fundamental
period. Table II shows a significantly improved performance
for FL-MPC because FT-MPC jeopardizes current tracking to
increase the switching frequency as fast as possible.

To evaluate the benefits of the computational speed-up, we
simulated the system while measuring the total time for sphere

TABLE IV: Total simulation time (Sim time), maximum
solving time (Max time), 70th percentile, 95th percentile, and
the average number of converter switching state nodes tra-
versed (# nodes) for FT-MPC, and FL-MPC with and without
computational speed-up.

FT-MPC FL-MPC no spd.-up FL-MPC w/ spd.-up
Sim time [s] 30 78 22

Max time [ms] 9.6 232 7.7
70th per. [ms] 0.60 0.87 0.55
95th per. [ms] 1.40 13.50 1.40

# nodes 101.9 323.5 58.9
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Fig. 5: Switching frequency step-up.

TABLE V: Comparison of the characteristics of controllers.

FT-MPC FL-MPC

Cost function Current tracking
fsw tracking

Current tracking
fsw limiting

Weighting factors
λsw: fsw tracking

weight
λu: switching penalty

λsw: fsw constraint
slack weight

λu: switching penalty
ILS optimizer

dimension dim(UT(k)) = 6Np dim(US(k)) = 4Np

Computational time Low Similar to FT-MPC
via speed-up (Prop. 1)

Transient current
tracking performance Good Improved

decoding.4 The results are shown in Table IV. Here, we can
see a clear improvement in the FL-MPC computation times;
long computation instances are eliminated thanks to the lower
bound in Proposition 1. These reduced times are comparable
to those of FT-MPC. To better understand the comparison of
the two controllers, we provide also the average number of
converter switching state nodes traversed in Table IV. Since
the nodes for p(k) and s(k) are computations based on the
previous nodes, this quantity represents the level of exploration
done by the sphere-decoders. We observe that FL-MPC tra-
verses fewer nodes than FT-MPC. However, the computation
times are similar due to the slightly longer computations
required for the slack variable. A final comparison of the
characteristics of the two controllers is provided in Table V.

V. CONCLUSION

We introduced FL-MPC, replacing the switching frequency
tracking objective of FT-MPC with switching frequency limit-
ing. FL-MPC has been shown to perform better than FT-MPC

4All problems are solved via MATLAB on a computer equipped with
16GB RAM and a 1.8GHz quad-core Intel i7 processor.
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in multiple scenarios. Additionally, a computational speed-up
was proposed for the sphere decoder of FL-MPC. Future
work could implement FL-MPC on an embedded FPGA.
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APPENDIX A
SPHERE DECODER FOR FT-MPC

Besides the conventional FCS-MPC of [8], the FT-MPC op-
timization problem is also amenable to an ILS reformulation.
We write the full-horizon vector Y T(k + 1) as a function of
UT(k), xT(k), vg(k), that is,

Y T(k + 1) = ΓTxT(k) +ΥTUT(k) +ΦTvg(k).

We also define the vector P (k) =
[∆u⊤(k) p⊤(k) . . .∆u⊤(k+Np−1) p⊤(k+Np−1)]⊤, which
can be computed as P (k) = ΠTUT(k)−ETuT(k− 1). We
remark that this definition slightly deviates from the original
notation we have for the full-horizon vectors. The matrices
ET, ΠT, ΓT, ΥT, ΦT, Q̄T are defined in Appendix B.

We use the full-horizon vectors to write the objective (3) as

J(UT(k))=||Y ∗
T(k+1)−Y T(k+1)||2Q̄T

+
λu

2
||P (k+1)||22.

As a remark, ||P (k)||22 = 2||∆U(k)||22 because
||∆u(ℓ)||22 = ||p(ℓ)||22. A similar trick was utilized also
in [27]. By using the definitions of Y T(k+1) and P (k), we
obtain the quadratic form

J(UT(k)) = UT(k)
⊤HTUT(k) + 2ΘT(k)UT(k) + θT(k),

where the Hessian is defined as HT = Υ⊤
TQ̄TΥT +

λu

2 Π⊤
TΠT and the linear cost term is ΘT(k) = (ΓTxT(k)−

Y ∗
T(k+1)+ΨTvg(k))

⊤Q̄TΥT− λu

2 (ETuT(k−1))⊤ΠT)
⊤.

The cost term θT(k) is independent of the decision variable
UT(k) and, therefore, gets discarded. Instead, we replace it
with another constant term to complete the squares.
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Algorithm 2 Modified sphere decoder for FT-MPC

1: Function: FTSphDec
2: Input: UT, Uopt

T , ÛT, ρ2, d2l−1, l, ℓ, k, uprev

3: Output: Uopt
T , ρ2

4: j = l − 6(ℓ− k)

5: U ←
{
{−1, 0, 1}, if j ∈ {1, 2, 3}
{|uj−3(ℓ)− uprev

j−3 |}, otherwise
6: if j = 6 then uprev ← u(ℓ), ℓ← ℓ+ 1
7: end if
8: for all u ∈ U do
9: UT,l←u , d2l←d2l−1+

(
ÛT,l−

∑l
j=1 VT,l,jUT,j(k)

)2

10: if d2l < ρ2 then
11: if l < 6Np then
12: New recursion: [Uopt

T , ρ2]← FTSphDec( UT,
Uopt

T , ÛT, ρ2, d2l , l + 1, ℓ, k, uprev
T )

13: else Uopt
T ← UT and ρ2 ← d2l

14: end if
15: end if
16: end for

The ILS reformulation of the FT-MPC problem is

min
UT(k)

||ÛT(k)− V TUT(k)||22

s.t. u(ℓ) ∈ {−1, 0, 1}3,∀ℓ,
p(ℓ) = |∆u(ℓ)|,∀ℓ,

(9)

where the unconstrained solution ÛT(k) = −V TH
−1Θ(k)

is defined by the generator matrix V T from the Cholesky
decomposition of HT = V ⊤

TV T. For the absolute switching
transitions p(ℓ), corresponding entries of the unconstrained
solution ÛT(k) are uncorrelated to the u(ℓ) entries, since
the constraint p(ℓ) = |∆u(ℓ)| is not imposed.

To solve the ILS problem presented in (9), a modified
version of the sphere decoder similar to that from [9], [27]
can be used. It is provided in Algorithm 2 for the sake of
completeness. The algorithm iterates over inputs, starting from
ℓ = k, exploiting the lower triangular structure of the generator
matrix V T. Here, V T,l refers to the lth row of the matrix V T,
and similarly, ÛT,l is the lth entry of the vector ÛT. While
maintaining the conventional algorithm structure, the input set
U can simply be modified for the iterations involving the vari-
able p(k). The sphere decoder would first iterate over the input
uj(ℓ) for some j ∈ {a, b, c} at a certain time step ℓ. The abso-
lute switching transition variables pj(ℓ) would then simply be
computed based on the switch positions uj(ℓ) and uj(ℓ− 1).

The algorithm is initialized with UT = U ini
T (k), ÛT =

ÛT(k), ρ2 = ρ2ini(k), d2l−1 = 0, l = 1, ℓ = k, uprev =

u(k − 1). The initial solution U ini
T (k) can be computed with

the educated guess (i.e., a shifted version of the previous
optimal solution Uopt

T (k− 1)), Babai estimate (a rounded but
feasible/valid version of the unconstrained solution ÛT(k)),
or both [10]. Recall that the dependence of p(ℓ) on ∆u(ℓ)
has to be imposed to obtain a valid/feasible initial solution.
The initial sphere radius ρ2ini(k) corresponds to the cost of the
initial solution U ini

T (k).

APPENDIX B
MATRICES FOR FT-MPC AND FL-MPC

First consider FT-MPC. Let ΠT ∈ R6Np×6Np ,

ΠT =


I3

03 I3

−I3 03 I3

. . .
. . .

. . .
−I3 03 I3

03 03 I3

,
where In ∈ Rn×n denotes the identity matrix. Further, we
define 0n ∈ Rn×n and 0n×m ∈ Rn×m as zero matrices.
Notice that ΠT is full-rank. With this definition we obtain
P (k) = [∆u⊤(k) p⊤(k) . . .∆u⊤(k+Np− 1) p⊤(k+Np−
1)]⊤ from P (k) = ΠTUT(k)−ETuT(k − 1), given that

ET =
[
I3 03 · · · 03

03 03 · · · 03

]⊤
∈ R6Np×6.

For the FL-MPC, we define ΠS ∈ R4Np×4Np and
LS ∈ RNp×4Np . The matrix LS extracts the slack variable
with a 1 on every fourth diagonal entry, i.e., LS =
diag(

[
01×3, 1,01×3, 1, . . .

]
). The matrix ΠS is defined as

ΠS =


I3

01×3 0
−I3 03×1 I3

. . .
. . .

. . .
−I3 03×1 I3

0 01×3 0

,
so ∆US(k) = ΠS(k)US(k)−ESuS(k − 1) holds with

ES =
[

I3 03×1 03×4(Np−1)

01×3 0 01×4(Np−1)

]⊤
∈ R4Np×4.

Notice that λuΠ
⊤
S ΠS + λswL

2
SLS ≻ 0 for all λu, λsw > 0.

Let Q̄T = INp
⊗ QT ∈ R3Np×3Np be the full-horizon

output weight of FT-MPC, where ⊗ denotes the Kronecker
product. The output weight of FL-MPC can similarly be
defined as Q̄S = INp

⊗QS = I2Np
.

For both FT-MPC and FL-MPC, the dynamics are given by
the matrices A(·) ∈ Rn×n, B(·) ∈ Rn×m, D(·) ∈ Rn×3, and
C(·) ∈ Rq×n, where (·) ∈ {T,S}, q = 3, n = 4, m = 6 for
FT-MPC, and q = 2, n = 2, m = 4 for FL-MPC. The horizon
is denoted as

Y (·)(k + 1) = [y(·)(k + 1)⊤ . . . y(·)(k +Np)
⊤]⊤,

Y (·)(k + 1) = Γ(·)x(·)(k) +Υ(·)U (·)(k) +Ψ(·)V g(k),

where the following definitions hold:

Γ(·) =

 C(·)A(·)
...

C(·)A
Np
(·)

,

Υ(·) =


C(·)B(·) 0q×m · · · 0q×m

C(·)A(·)B(·) C(·)B(·)

...
...

. . . 0q×m

C(·)A
Np−1

(·) B(·) . . . C(·)B(·)

,

Ψ(·) =


C(·)D(·) 0q×3 · · · 0q×3

C(·)A(·)D(·) C(·)D(·)

...
...

. . . 0q×3

C(·)A
Np−1

(·) D(·) . . . C(·)D(·)

.
The matrices are of the sizes Γ(·) ∈ RqNp×n, Υ(·) ∈
RqNp×mNp , and Ψ(·) ∈ RqNp×3Np .
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