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Abstract—This paper presents the computation of three-level
optimized pulse patterns (OPPs) that can keep the junction
temperature bounded. Adding a thermal constraint, however,
compromises the output current quality. To tackle this issue,
OPPs with relaxed symmetry properties and multipolar switch
positions are allowed. As a result, the harmonics remain low and
close to those of conventional OPPs, as demonstrated by the pre-
sented results. Nevertheless, by relaxing the OPP properties, the
computation time increases drastically. To exploit the benefits of
the proposed OPPs, an efficient computation method is developed
to keep the computation time modest. This is done by employing
the concept of virtual switching angles that encapsulate the OPP
switching transitions and the switching angles.

Index Terms—Optimal modulation, pulse width modulation
(PWM), multilevel converters, power losses, thermal stress, reli-
ability

I. INTRODUCTION

The semiconductor devices are the most expensive and vul-

nerable components in high-power electronics. To ensure op-

eration within their safe operating area, the maximum junction

temperature limit defined by the manufacturers should always

be respected. By guaranteeing safe and reliable operation close

to the thermal limits, the instantaneous converter capability can

be fully utilized [1].

Since the switching losses have a direct effect on the

junction temperature, it is common practice to manipulate

them by means of control and modulation. With regards to

the former, the control problem can be designed such that the

thermal stress is either indirectly or directly addressed. For

example, [2] reduces the switching losses by simultaneously

decreasing the switching frequency and the output current.

More versatile control techniques, such as model predictive

control (MPC), can be designed to account for the thermal

stress in the objective function of the MPC problem [3]. This

equips the control scheme with degrees of freedom that enable

the adjustment of the trade-off between current harmonic

distortions and thermal performance [4].

As for modulation techniques, the losses can be decreased

by either reducing the switching frequency or applying some

form of discontinuous pulse width modulation (PWM) [5].

For example, by altering the discontinuous PWM pattern

different thermal performance can be achieved [6]. Moreover,

discontinuous PWM can be modified to keep the switching

losses below a specific bound [7]. With all aforementioned

options, however, the output current quality deteriorates when

the number of pulses per fundamental period decreases. To

improve the trade-off between output current quality and

reliability, [8] proposes to employ discontinuous PWM only

when the devices reach a critical end-of-life threshold. An

alternative approach to improving the said trade-off is to

choose the switching frequency by assessing the ratio between

the expected lifetime extension and current total harmonic

distortion (THD) deterioration [9].

However, when high-power applications are of interest, as

in this work, the aforementioned trade-off produced with the

discussed methods can be particularly poor. To achieve a

favorable compromise between current quality and thermal

stress, optimized pulse patterns (OPPs) can be considered,

since they achieve low harmonic distortions at low switching

frequencies [10]. Moreover, the switching losses produced by

OPPs can be further reduced by accounting for them in the

OPP optimization problem. In this direction, [11] modified

the OPP problem to keep the switching power losses bounded

while still producing currents of high quality. To facilitate such

a favorable trade-off between losses and current quality, [11]

adopted the OPP symmetry relaxations proposed in [12].

In doing so, the search space of the optimization problem

increased, thus allowing for more degrees of freedom during

the OPP computation process. By exploiting this feature, the

robustness of such loss-bounded OPPs to changes in the power

factor can also be improved [13].

Nevertheless, the switching losses are merely a proxy of the

junction temperature. Therefore, to successfully address poten-

tial issues linked to the junction temperature, it is beneficial

to formulate the OPP problem to directly account for it. For

this reason, the computation of OPPs with explicit bounds on

the temperature was proposed in [14]. Similarly to [11], that

work proposed OPPs with relaxed, i.e., half-wave, symmetry

to improve the trade-off between the junction temperature and

the total demand distortion (TDD) of the output current.

Motivated by [14], this paper extends this concept by

allowing multipolar switching sequences to effectively relieve

the most thermally stressed devices. As shown in [12], such

sequences can have a positive impact on the performance of

OPPs. However, allowing for multipolar switching sequences



results in an exponential increase in the number of candidate

sequences as the pulse number increases. Hence, exhaustively

enumerating all available sequences and solving an optimiza-

tion problem for each one of them would significantly increase

the computational time. To tackle this issue, the proposed OPP

problem is reformulated such that it returns the optimal switch-

ing sequence without iterating over all candidate options, thus

significantly alleviating the required computational time. To do

so, the concept of virtual angles—initially presented in [15]—

is adopted to combine the information of switching angles

and transitions in one optimization variable. The presented

numerical results based on a three-level neutral-point-clamped

(NPC) converter demonstrate the benefits of the proposed

approach both in terms of the junction temperature–current

TDD trade-off as well as required computation time.

II. CONVENTIONAL THREE-LEVEL OPPS

Let the ratio between the device switching frequency fsw

and the fundamental frequency f1 be the pulse number d, i.e.,

d = fsw

f1
. A 2π-periodic three-level switching signal u(θ) is

characterized by 4d + 1 switch positions uj ∈ {−1, 0, 1},

j ∈ {0, . . . , 4d}, and 4d switching angles αi, i ∈ {1, . . . , 4d},

at which a switching transition ∆ui = ui − ui−1 ∈ {−1, 1}
occurs. To compute the signal u(θ), i.e., the 4d + 1 switch

positions and 4d switching angles of the OPP, that results

in the minimum current distortions, an objective function

that captures the load current TDD ITDD is formulated. Note

that the latter is proportional to the weighted sum of the

switching harmonics ûn =
√

a2n + b2n when an inductive load

is assumed, where an and bn are the Fourier coefficients of the

nth OPP harmonic. For an analytical derivation of the current

TDD expression as well as the an and bn Fourier coefficients,

the reader is referred to [12].

Conventional OPPs assume three-phase symmetry, quarter-

and half-wave symmetry (QaHWS), and unipolar switching.

Therefore, they can be fully described with only d switching

angles α ≡ αQ = [α1 α2 . . . αd]
T

∈ [0, π/2]d, while the

switch positions are deterministic. Consequently, the optimiza-

tion problem to compute such OPPs is

minimize
αQ

J1(αQ) =
∑

n=5,7,...

(

bn
n

)2

subject to b1 = m

0 ≤ α1 < α2 < . . . < αd ≤ π
2 ,

(1)

where m ∈ [0, 4/π] is the desired modulation index. Note that

the an Fourier coefficients and even harmonics are zero due

to the QaHWS, while triplen harmonics do not drive harmonic

current when a load in wye configuration with a floating star

point is assumed.

III. THERMALLY-CONSTRAINED THREE-LEVEL OPPS

A. Junction Temperature Calculation for an NPC Converter

A three-level NPC converter with a machine is shown in

Fig. 1. In each phase, there are four active switches S1 to

S4 with their respective freewheeling diodes D1 to D4, and
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Fig. 1: Three-level neutral-point-clamped (NPC) converter driving a machine.

TABLE I: Semiconductor device parameters

GCT 5SHY 55L4500

Turn-on losses eon 1.8 J

Turn-off losses eoff 26.5 J

GCT coefficient aGCT 1.12 V

GCT coefficient bGCT 0.26 · 10−3 V/A

Max. junction temp. Tj,max 125◦C

Thermal resistances R1−6 5.56, 1.53, 0.87, 0.55, 7.0, 2.4K/kW

Time constants τ1−6 512, 89.6, 9.1, 2.4, 9000, 3000 ms

Diode 5SDF 20L4520

Reverse recov. losses err 13.9 J

Diode coefficient adiode 1.7V

Diode coefficient bdiode 0.8 · 10−3 V/A

Max. junction temp. Tj,max 135◦C

Thermal resistances R1−6 3.71, 1.43, 0.69, 0.18, 2.5, 10.4K/kW

Time constants τ1−6 534, 67.0, 7.4, 1.1, 4000, 8000 ms
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+

−

+ − + −

ploss 1
T
mT

T1

R1

C1

T2

R2

C2

Tm

Rm

Cm

Fig. 2: Foster model of the mth order.

two clamping diodes D5 and D6. In this work, the semicon-

ductor devices used are the 5SHY 55L4500 integrated-gate-

commutated thyristor (IGCT) [16] and the 5SDF 20L4520

diode [17]. The parameters of the semiconductor devices at

rated maximum values of anode-cathode voltage vT = 2.8 kV

and anode current iT = 4 kA are given in Table I.

For the computation of the semiconductor junction tem-

perature, the mth-order Foster model is used, see Fig. 2. It

consists of m RC-networks that model the heat transfer from

the junction through the case to the cooling water. Considering

the frequency domain, the junction temperature is given by

Tj(s) = Ploss(s) · Zth(s) + Tw , (2)

where Tw is the temperature of the cooling water and

Zth(s) =
m
∑

i=1

Ri

τis+ 1
(3)

is the transient thermal resistance with time constant

τi = RiCi.



TABLE II: Switching energy losses in an NPC phase leg.

Polarity of Switching Switching

phase current ix transition energy losses

> 0

0 → 1 eon,S1
+ err,D5

1 → 0 eoff,S1

0 → −1 eoff,S2

−1 → 0 eon,S2
+ err,D4

< 0

0 → 1 eoff,S3

1 → 0 eon,S3
+ err,D1

0 → −1 eon,S4
+ err,D6

−1 → 0 eoff,S4

TABLE III: Conduction energy losses in an NPC phase leg.

Polarity of Switch Conduction

phase current ix position energy losses

> 0

1 econ,S1
+ econ,S2

0 econ,S2
+ econ,D5

−1 econ,D3
+ econ,D4

< 0

1 econ,D1
+ econ,D2

0 econ,S3
+ econ,D6

−1 econ,S3
+ econ,S4

In the time domain, the junction temperature Tj can be

computed with the following system of differential equations

dT (θ)

dθ
= FT (θ) +Gploss(θ) (4a)

Tj(θ) = 1
T
nT (θ) + Tw , (4b)

where ploss(θ) are the instantaneous losses at angle θ,

T = [T1 T2 . . . Tm]
T

is the vector of temperatures Tk of the

RC-networks, with k = 1, 2, . . . ,m, and 1m is a vector of

ones. Finally, the system matrix F and output vector G are

F =















− 1
τ1

0 . . . 0

0 − 1
τ2

...

...
. . .

...

0 0 . . . − 1
τm















1

ω1
, and G =















1
C1

1
C2
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1
Cm















1

ω1
,

where ω1 is the fundamental angular frequency.

As shown in [14], the instantaneous value of the tempera-

tures at angle θ can be found by integrating (4a), yielding

T (θ) = eF θT (0) +

∫ θ

0

eF (θ−x)Gploss(x) dx , (5)

where e is the matrix exponential, while the initial temperature

T (0) is given by

T (0) =
(

Im − eF 2π
)

−1
∫ 2π

0

eF (θ−x)Gploss(x) dx ,

due to the 2π-periodicity of the applied OPP. Therefore, as it

can be deduced from (5), the instantaneous losses are required

for the calculation of the junction temperature. Due to the

OPP symmetries, it suffices to compute ploss in only one

phase leg of the NPC converter. To do so, the devices that

turn on and off at each OPP switching event in the phase

leg are identified based on the polarity of the commutated

current. The latter is considered sinusoidal with frequency

f1, i.e., i(t) = I sin(2πf1t − φ), where I is the amplitude

of the current and φ the angular displacement between the

phase current and voltage. Subsequently, the incurred losses

are computed based on the instantaneous value of the current

and the dc-link voltage, which is assumed to be constant. The

instantaneous switching and conduction losses are summarized

in Tables II and III, respectively, where eon/eoff denote the turn-

on/off energy losses of the IGCTs, err the reverse recovery

energy losses of the diodes, and econ the conduction energy

losses.1

Hence, based on the above, it can be concluded that the

junction temperature Tj of each device at switching angle αi

can be computed using (5) and (4b) with θ = αi. As can

be seen, this temperature is a function of the applied OPP,

phase current, and displacement angle φ. Therefore, as shown

in [14], it can be computed in the OPP optimization procedure,

and consequently directly manipulated during this process, as

explained in the sequel of this section.

B. Symmetry-Relaxed OPP Problem to Limit the Junction

Temperature

To account for the junction temperature in the OPP com-

putation the maximum junction temperature of all devices is

bounded by adding the constraint2

T ℓ
j,max(α, φ) ≤ T ℓ

j,lmt ∀ℓ ∈ {S1,2, D1,2,5} , (6)

to the optimization problem (1), where T ℓ
j,lmt is 125◦C and

135◦C for the IGCTs and diodes, respectively, used in this

work. It should be pointed out that, due to the high switching

losses of the selected devices, the maximum junction tem-

perature most probably occurs after a switching transition.

Therefore the maximum junction temperature T ℓ
j,max of each

device is assumed to be

T ℓ
j,max = max{T ℓ

j (αi)} , i ∈ {1, . . . , 4d} , (7)

and it is a function of the applied OPP, phase current, and

displacement angle φ.

OPPs that are computed based on the revised OPP

problem—i.e., problem (1) with constraint (6)—can guarantee

that the junction temperature remains within the desired limits.

Nevertheless, in doing so, the quality of the current TDD

is compromised as a trade-off between Tj and ITDD arises.

As recently shown in [14], this trade-off can be improved

by relaxing the symmetry of the OPP and allowing for half-

wave symmetry (HWS). This relaxation increases the search

space of the three-level OPP problem since the OPP switching

angles can be more freely distributed over the half-period. As a

result, the increased harmonic distortions caused by additional

1The detailed computation of the losses is provided in [11] and [13].
2Due to the single- and three-phase symmetry properties of OPPs, the de-

vices in the pairs {S1, S4}, {D1,D4}, {S2, S3}, {D2,D3}, and {D5,D6}
have the same losses, see also [11]. Hence, it suffices to constraint the junction
temperature of the five semiconductor devices in the upper half of one NPC
leg, namely S1, S2, D1, D2, and D5.
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Fig. 3: Unipolar QaHWS OPP with d = 5 at modulation index m = 0.72

constraints in the optimization problem can be mitigated, thus

enabling an improved ITDD–Tj trade-off.

With the above relaxation, 2d switching angles α ≡ αH =
[α1 α2 . . . α2d]

T
∈ [0, π]2d are needed to fully describe u(θ).

As a result, the optimization problem that accounts for the

thermal constraints is revised to the following form [14]

minimize
αH

J(αH) =
∑

n=5,7,11,...
a2

n+b2n
n2

subject to a1 = 0, b1 = m

0 ≤ α1 < α2 < . . . < α2d ≤ π

T ℓ
j,max(αH , φ) ≤ T ℓ

j,lmt ∀ℓ ∈ {S1,2, D1,2,5} .
(8)

Note that, as with problem (1), only odd non-triplen harmonics

are considered since even harmonics remain zero due to

the HWS, while triplen harmonics do not affect the current.

Moreover, a1 = 0 such that the phase of the fundamental

component is zero.

C. Thermally-Constrained Multipolar HWS OPPs

As demonstrated in [12], besides symmetry relaxations,

relaxing the polarity of the OPP switch positions can have a

beneficial impact on the output current quality. This means

that the single-phase OPP can assume all possible values

in the first half of the period, i.e., uj ∈ {−1, 0, 1}, for

j ∈ {0, 1, . . . , 2d}. In the context of thermally-constrained

OPPs, multipolar switch positions can potentially have another

advantage since the junction temperature of the devices that

are predominantly used during half of the period has more

time to drop, thus keeping the thermal stress at bay.

An example of the benefit of multipolar OPPs is shown

in Figs. 3 and 4, for modulation index m = 0.72, displace-

ment angle φ = 35◦, and rated current 2.8 kA. The said
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(a) OPP and phase current at displacement angle φ = 35◦
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Fig. 4: Multipolar HWS OPP with d = 5 at modulation index m = 0.72.

displacement angle and chosen operating conditions imply that

devices S1 and D5 produce switching losses, while devices

S1, S2 and D5 produce conduction losses, see Tables II

and III, respectively. Since the switching losses have a bigger

impact on the junction temperature, and the IGCTs have higher

switching losses than the diodes, it can be deduced that the

most thermally stressed device is the outer switch S1. For this

reason, the junction temperature of this device is displayed in

Figs. 3(b) and 4(b). As can be seen, when conventional (unipo-

lar) OPPs are applied (see Fig. 3), the maximum steady-state

junction temperature is Tj,max = 127◦C. This temperature is

above the IGCT safe operation limit of 125◦C, meaning that

this pattern could harm this device. To avoid this, the output

current could be reduced, thus decreasing the output power of

the converter. Alternatively, an OPP with a lower pulse number

could be used instead, thus reducing the switching frequency at

a cost of a higher current TDD. These problems can be avoided

with multipolar HWS OPPs, see Fig. 4. Even though operation

at the same switching frequency is assumed, the maximum

junction temperature of switch S1 is only Tj,max = 109◦C.

This is achieved thanks to the implemented negative switch

positions that remove some of the switching losses from S1

and distribute them among other devices, e.g., S2 and S4.

Given the above, thermally-constrained multipolar HWS

OPPs are proposed in this work. To compute such OPPs,

the 2d optimal switching angles αH and the 2d optimal

switch positions uH = [u0 u1 . . . u2d−1]
T

have to be found.

This requires the evaluation of 2d+1 − 1 possible sequences

for a given pulse number d. Such an exponential increase

in the number of candidate sequences, however, indicates a

significant increase in the complexity of the—already difficult

to solve—relaxed OPP problem, making the computation of



multipolar HWS OPPs a very challenging task.

This work overcomes this issue by solving the thermally-

constrained multipolar HWS OPP problem only once per

initial switch position u0 ∈ {−1, 0, 1}. To do so, the switching

angle αi ∈ [0, π] and the switch transition ∆ui ∈ {−1, 1} are

combined into one optimization variable, as proposed in [15].

This new variable, referred to as virtual angle γi, is defined

as

γi = αi +
1−∆ui

2
π . (9)

As can be inferred from (9), in contrast to the switching angles

αi which assume values in [0, π], the virtual angles γi assume

values in [0, 2π]. Specifically, the virtual angles γi ∈ [0, π]
correspond to positive switching transitions ∆ui = 1 with

γi = αi, meaning that

sin(nγi) = sin(nαi) = ∆ui sin(nαi) ,

and

cos(nγi) = cos(nαi) = ∆ui cos(nαi) .

On the other hand, the virtual angles γi ∈ [π, 2π] correspond

to negative switching transitions ∆ui = −1 with γi = αi+π,

resulting in

sin(nγi) = sin(n(αi + π)) = sin(nαi) cos(nπ)

= − sin(nαi) = ∆ui sin(nαi) ∀n odd ,

and

cos(nγi) = cos(n(αi + π)) = cos(nαi) cos(nπ)

= − cos(nαi) = ∆ui cos(nαi) ∀n odd .

Hence, based on the above, the Fourier coefficients an and bn
can be written as a function of γi. This implies that the OPP

objective function can be reformulated accordingly to account

for this.

Following, the constraints on the virtual angles need to

be defined. Taking into account that the value of γi deter-

mines the polarity of the switching transition, the number of

positive and negative positive switching transitions has to be

identified. This can be done by observing that the number of

positive and negative OPP switching transitions depends on

the initial switch position u0, see Fig. 5. When u0 = 0, d
switching transitions are positive and d negative, highlighted

with green and red arrows, respectively, in Fig. 5(a). In the

case of u0 = 1, d − 1 switching transitions are positive

and d + 1 negative, see Fig. 5(b). Finally, d + 1 switching

transitions are positive and d − 1 negative when u0 = 1,

see Fig. 5(c). Therefore, by combining all cases, d − u0

virtual angles relate to positive switching transitions, meaning

γi ∈ [0, π] for i ∈ {1, . . . , d− u0}, while d+u0 virtual angles

relate to negative switching transitions, i.e., γi ∈ [π, 2π] for

i ∈ {d− u0 + 1, . . . , 2d}.

Finally, unlike conventional OPPs where the unipolar switch

positions are deterministic, the multipolar switch positions of

the proposed OPPs must be computed during the optimization

procedure to ensure they respect the available voltage levels.

For that reason, the following procedure is adopted:
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Fig. 5: Multipolar HWS pulse patterns for d = 5.

Step 1: The switching angles αi and switching transitions ∆ui

are derived from the virtual angles γi.
Step 2: The computed switching angles αi are sorted in an

ascending order.

Step 3: The switch position ui is computed by cumulative

summing up all the switching transitions starting from the

initial switch position until the transition ∆ui(αi), i.e., ui =
u0+

∑i

j=1 ∆uj , where switching transition ∆uj corresponds

to the j th sorted switching angle αj .

Based on the above analysis, the optimization problem for

thermally-constrained multipolar HWS OPPs becomes

minimize
γH

J(γH) =
∑

n=5,7,11,...
a2

n(γH)+b2n(γH)
n2

subject to a1 = 0, b1 = m

0 ≤ γ1 < γ2 < . . . < γd−u0
≤ π

π ≤ γd−u0+1 < γd−u0+2 < . . . < γ2d ≤ 2π

−1 ≤ ui ≤ 1 ∀i ∈ {1, . . . , 2d}

T ℓ
j,max(γH , u0, φ) ≤ T ℓ

j,lmt ∀ℓ ∈ {S1,2, D1,2,5},
(10)

where γH = [γ1 γ2 . . . γ2d]
T

∈ [0, 2π]2d is the vector

of the 2d virtual switching angles. Note that, as previously



mentioned, constraint −1 ≤ ui ≤ 1 is added to (10) to ensure

that the derived switching sequences respect the voltage-level

limits of a three-level NPC converter. Finally, the junction

temperature constraint is a function of not only the virtual

angles but also the initial switch position u0 ∈ {−1, 0, 1}.

IV. NUMERICAL RESULTS

This section shows the optimization results for (a) con-

ventional QaHWS OPPs (see problem (1)), (b) thermally-

constrained unipolar QaHWS OPPs (see problem (1) with

constraint (6)), (c) thermally-constrained unipolar HWS OPPs

(see problem (8)), and (d) thermally-constrained multipolar

HWS OPPs (see problem (10)). OPPs in the “b” category

are hereafter referred to as QaHWS–uni–Tj OPPs, those in

category “c” as HWS–uni–Tj OPPs, while those in category

“d” as HWS–multi–Tj OPPs. All OPPs are computed for a

medium-voltage (MV) drive system consisting of a squirrel

cage induction machine with 3.3 kV rated voltage, 2.8 kA

rated current, 50Hz nominal frequency, 0.25 per unit (p.u.)

total leakage reactance, and a three-level NPC inverter with

a dc-link voltage of Vdc = 4.84 kV. The parameters of the

considered semiconductor devices are presented in Table I,

while the temperature of the cooling water is Tw = 37◦C. For

demonstration purposes, OPPs with d = 5 and 6 are used,

see Figs. 6 and 7 respectively. All OPPs are computed for

modulation indices in the range m ∈ [0.45, 1.11], where the

upper limit corresponds to the rated voltage. Note that the

modulation index is proportional to the fundamental frequency,

while OPPs with higher pulse numbers would be used for

m < 0.65. Finally, all OPPs are calculated assuming φ = 35◦.

As explained in Section III-B, only the five devices of the

upper half of the NPC leg are considered in the optimization

problem due to the symmetry of the OPPs. Nevertheless, given

the above-mentioned operating conditions, device S1 is the

most thermally stressed device in all considered cases. Since

the rest of the devices are well below their thermal limits, only

the junction temperate of S1 is presented hereafter.

Regarding pulse number d = 5, the maximum junction

temperature Tj,max of device S1 within the range of considered

modulation indices is shown in Fig. 6(a). Therein, the (blue)

solid line indicates Tj,max when conventional QaHWS OPPs

are used. As can be seen, when the junction temperature is

not constrained, the requirement Tj,max ≤ 125◦C is violated

for a wide range of modulation indices, namely m ≥ 0.72.

Therefore, the switching angles should occur at a lower current

to protect the semiconductor device(s).

When the junction temperature constraint is implemented,

the resulting QaHWS–uni–Tj OPPs respect it for all the

aforementioned values of m. This, however, occurs at a cost

of an increased current TDD, as can be observed in Fig. 6(b).

However, when the symmetry properties are relaxed, HWS–

uni–Tj OPPs not only reduce the junction temperature over

the whole range of modulation indices but also ITDD is better

than that of QaHWS–uni–Tj OPPs. Regarding this point, when

compared with the conventional QHWS OPPs, the maximum

relative increase in ITDD is 85% for QaHWS–uni–Tj OPPs

at m = 1.03, while it is only 22.1% for HWS–uni–Tj

OPPs at the same modulation index. More impressively, when

the multipolar patterns are allowed, the junction temperature

constraint can be met while the current TDD is even lower

than that of QaHWS OPPs. This is thanks to the additional

degrees of freedom of problem (10), as it can choose among

2d+1 − 1 = 63 switching sequences and distribute 2d angles

over a wider range of values. More specifically, multipolar

OPPs are selected for m ∈ [0.45, 0.66] ∪ [0.69, 0.78], see

Fig. 6(d). Note that in this figure, the unipolar OPP corre-

sponds to pattern #47 (shown with blue solid circles), whereas

all other candidate patterns are multipolar OPPs. As can be

inferred, using negative switch positions in the first half-

period not only relieves the most thermally stressed device

but also improves the quality of the output current. For higher

modulation indices, multipolar patterns are suboptimal. Still,

the relaxation of the symmetry mitigates the expected increase

in ITDD due to the thermal constraint.

Similar observations can be made for d = 6, see Fig. 7.

The increase in the pulse number, i.e., switching frequency,

is expected to result in higher switching losses. Indeed, the

maximum junction temperature of device S1 violates its limit

for an even wider range of modulation indices, i.e., m ≥ 0.68,

when conventional QaHWS OPPs are applied. Hence, these

OPPs cannot be used in practice in that operating range as

they would damage the said device. However, by constraining

the junction temperature, the physical requirements can be

met for the whole range of examined operating points, but

at the expense of deteriorated harmonic performance. Nev-

ertheless, as with d = 5, this adverse effect is mitigated

when HWS OPPs are applied. Specifically, the implemented

symmetry relaxation enables the redistribution of the switching

transitions such that the switching events occur at lower

currents. Further relaxations in the switching properties result

in different distribution of the switching losses among the

semiconductor devices of the NPC converter. This is thanks

to the fact that, eventually, ten different switching sequences

are used over the depicted range of modulation indices. Yet,

the proposed OPP problem (10) has the freedom to choose

among 127 possible switching sequences when d = 6; 126
multipolar and one unipolar (which corresponds to pattern

#95 in Fig 7(d)). This highlights the freedom the proposed

approach offers to choose among various different patterns that

can lead to an improved ITDD–Tj trade-off.

To further highlight the importance of HWS and multipolar

OPPs, it is worth discussing the case of QaHWS–uni–Tj OPPs

in more detail. Due to the limitations imposed by the symmetry

and switching properties, it is not always possible to find a

solution with the desired number of switching transitions while

still meeting the junction constraint. This behavior becomes

more prominent as the modulation index increases, where the

search space gets smaller. Since reducing the switching events

also reduces the switching losses, OPPs with lower pulse

numbers should be used as m increases to meet the thermal

constraints. Because of this, the thermally-constrained unipolar

QaHWS OPP problem is solved for different values of d, and
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Fig. 6: QaHWS and HWS OPPs for d = 5 without and with the Tj constraint.
The solid (blue) line corresponds to the conventional QaHWS OPPs, the
dashed (red) line to QaHWS–uni–Tj OPPs, the dash-dotted (green) line to
HWS–uni–Tj OPPs, and the dotted (pink) line to HWS–multi–Tj OPPs.
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Fig. 7: QaHWS and HWS OPPs for d = 6 without and with the Tj constraint.
The solid (blue) line corresponds to the conventional QaHWS OPPs, the
dashed (red) line to QaHWS–uni–Tj OPPs, the dash-dotted (green) line to
HWS–uni–Tj OPPs, and the dotted (pink) line to HWS–multi–Tj OPPs.
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the QaHWS–uni–Tj OPP that results in the lowest ITDD at a

given modulation index is selected in a post-processing step.

Taking the d = 6 case as an example (see Fig. 7), the selection

of lower pulse numbers is visible in Fig. 7(c). Specifically,

QaHWS–uni–Tj OPPs with pulse number d = 6 are used

up to modulation index m = 0.76, whereas d = 5 is the

most suitable pulse number for m ∈ [0.76, 0.85]∪ [0.92, 0.98].
Moreover, four switching transitions are needed in the range

0.85 ≤ m ≤ 0.92 to meet the thermal requirements. Finally,

QaHWS–uni–Tj OPPs with d = 3 are used for m ≥ 0.98.

As QaHWS–uni–Tj OPPs require fewer pulse numbers than

the thermally-constrained HWS OPPs (both unipolar and

multipolar), the corresponding switching frequency is lower.

Consequently, the current quality is compromised, as can

also be observed in Fig. 7(b). This clearly demonstrates that

the artificial limitations during the computation of thermally-

constrained OPPs can result in suboptimal results.

In a last step, the benefits of the proposed OPP problem

formulation (10) in terms of computation time are discussed.

First, it is worth pointing out, that the conventional solution

method would enumerate all 127 possible switching sequences

when d = 6. In contrast to this, the thermally-constrained

multipolar HWS OPP problem needs to be solved only three

times with the proposed solution method, enabling a time-

efficient computation of the OPPs. To quantify this, Fig. 8

presents the time required by the conventional and proposed

solution methods for the computation of HWS–multi–Tj OPPs

with different pulse numbers. As can be seen, the conventional

solution method requires approximately five days to compute

HWS–multi–Tj OPPs with d = 6. This is in stark contrast to

the time required by the proposed solution, which amounts

to only half a day. For pulse number d = 7, the savings in

computation time are more than 95%, and they are getting

bigger with an increasing pulse number.

V. CONCLUSIONS

This paper presented the computation of thermally-

constrained OPPs. By appropriately imposing a constraint

on the junction temperature, the semiconductor devices can

be operated at their thermal limits without violating them.

Moreover, as demonstrated by the presented numerical results,

by relaxing artificial restrictions in the OPPs, such as the OPP

symmetry and the polarity of the switch positions, the trade-

off between current TDD and junction temperature can be

significantly improved. These benefits can be reaped thanks to

the proposed OPP problem formulation that brings significant

savings in the required computation time, thus facilitating the

computation of thermally-constrained multipolar HWS OPPs

for several pulse numbers.
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