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Abstract—Long prediction horizon finite control set model
predictive control (LPH-FCS-MPC) for power converters can
be reformulated as a box-constrained integer-least squares (ILS)
problem to find the optimal control action without requiring an
exhaustive search. Instead, the solution can be found by means
of a sphere decoding method that still presents several intricacies
regarding its complexity and its variable computational cost. This
paper provides a study of the computational behavior of this ap-
proach. Special emphasis is placed on how the generator matrix
is calculated, either as a lower or an upper triangular structure.
This choice decides whether the switching sequences are explored
forward- or backward-in-time during the optimization process.
In this work, it is explained how this selection holds a great
impact on the computational burden of the algorithm. Similarly,
it is also analyzed how the tuning of the FCS-MPC and system
parameters also drastically impacts the computational cost.

Index Terms—Predictive control, digital control, three-phase
DC-AC inverters.
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I. INTRODUCTION

MODEL predictive control (MPC) is becoming a pop-
ular strategy in power electronics [1]. Although the

application to the control of power converters has been de-
layed compared with other industrial processes where MPC
has enjoyed a key role for decades, the development of
increasingly powerful digital control platforms has allowed
the successful development of MPC strategies, such as finite
control set - MPC (FCS-MPC) [2]. FCS-MPC is a control
method in which an integer optimization problem is solved
every control interval to find the optimal control input. This is
done according to a quadratic cost function that quantifies the
suitability of each control outcome to accomplish the control
objectives. One key aspect of FCS-MPC is that the control
inputs are restricted to the discrete set that corresponds to
the switch positions or voltage levels of the power converter
[3]. In this sense, FCS-MPC is a direct control method
as it prescinds from a modulation stage [4]. In this way,
sampling and switching frequencies are decoupled, allowing
one to increase the control bandwidth to obtain a fast dynamic
response compared to indirect control methods. Also, it causes
the switching frequency to be variable. For this reason, the
average switching frequency F̄sw is typically calculated as a
measurement of the switching effort in FCS-MPC [1].

Essential to any kind of MPC concept is the notion of pre-
diction. To evaluate possible control outcomes of the system,
one needs a discrete prediction model to compute the evolution
of the system state variables at future sampling instants. The
number of time steps considered in the predictions is the
prediction horizon length (Np). In general, selecting a long
Np allows the controller to make well-informed decisions and,
thus, improve performance [5]. For instance, it is known that
longer Np helps the controller to avoid switching sequences
that will excite resonances in the system, or improve the
harmonic quality per switching effort [6]. In practice, Np,
together with the sampling and switching frequencies define
the prediction window and the granularity of switching, which
are crucial magnitudes as they represent the actual amount of
time considered in the predictions and the accuracy in time of
the problem discretization, respectively. As such, the tuning of
these parameters is highly coupled and is an intricate challenge
where performance, efficiency, and computational complexity
are involved. This problem is thoroughly studied in [5].

Since the number of possible combinations of members in
the FCS increases exponentially with Np, solving the LPH-
FCS-MPC through exhaustive enumeration is highly inefficient
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if not completely intractable. The main existing solutions rely
on the reformulation of the optimization problem as an equiv-
alent box-constrained integer least-squares (ILS) problem [7],
[8]. This is achieved through algebraic manipulation of the cost
function, where the Hessian matrix of the quadratic form is
decomposed by Cholesky’s factorization. The obtained factor
is a generator matrix H which defines a lattice where the
different candidates lie. In this form, the optimal candidate can
be found by branch-and-bound methods carried out through
a connected graph in tree form. For example, with a sphere
decoding algorithm (SDA), it is possible to find the optimal
solution without exploring the entire set of candidates. Thus,
the computational burden is significantly reduced [9]. A survey
of the main techniques, applications, and future works of
long prediction horizon FCS-MPC (LPH-FCS-MPC) can be
found in [10]. Despite the advantages of the ILS approach, the
computational complexity is still considerable and represents
an important challenge.

This work will offer an in-depth computational analysis of
the LPH-FCS-MPC problem. The goal of this study is twofold:
To provide a better characterization of these techniques in
regards to its computational behavior and to facilitate a more
widespread adoption by helping reduce the computational cost.
Two topics will be specially addressed. First, the influence of
different control and system parameters on the computational
cost will be studied. In particular, it will be shown how
the conditioning metrics of the lattice generator matrix are
essential to explain this influence. Second, it will be studied
how the calculation of the lattice generator matrix as an
upper- or lower-triangular structure is also crucial, as it defines
the exploration mode of the search tree. Forward-in-time
exploration (FTE) and backward-in-time exploration (BTE)
are both possible and both provide the same optimal solution.
However, the impact in terms of computational performance
is large. Most works in the literature use either an FTE or a
BTE mode without a proper analysis to support this decision.
The main differences in formulation will be highlighted. The
possibility to define switching sequences in time-ascending
order (TAO) or in a time-descending order (TDO) will also
be addressed in the presented study. Then, different advanced
SDA techniques proposed in the literature will be considered
in the comparison to determine which formulation is more
adequate. This paper is structured as follows. In Section
II, the control formulation is presented. Typical algorithms
to solve the optimization problem are presented in Section
III. Theoretical concepts regarding the complexity of lattice
search problems are presented in Section IV. Simulation and
experimental results are carried out in Section V. Section VI
offers the conclusions to this article.

II. FCS-MPC FORMULATION

Consider a system described by a a discrete-time state-space
representation with sampling frequency fs such as:

xk+1 = Axk +Buk; yk = Cxk, (1)

where k is the discrete time step. Vector x ∈ Rn is the system
state variable, y ∈ Rny is the system output, and u ∈ Vnu

is the system input, where V ⊂ Z restricts the input to a set

LC Filter

f;

f;

f;

f

f

f

f f f

o;

o;

o;

o

c; c; c;

Load
dc

Fig. 1. Two-level three-phase voltage source inverter with output LC filter.

of integer switch positions. For the experimental tests carried
out in this paper, a system plant consisting of a two-level
three-phase voltage source inverter connected to an LC filter
of values Lf and Cf will be considered. In this plant, the
FCS is defined by V = {0, 1} and nu = 3. A schematic of
the system is shown in Fig. 1.

The setup is operated as an uninterruptible power supply
system through a voltage controller defined in the stationary
αβ-frame [11], [12]. The controller seeks to impose sinusoidal
AC three-phase voltages at 50 Hz at the LC filter output ter-
minals where a resistive inductive load is connected1. Further
information on how to extract the prediction model from such
system can be found in [13], [14].

By successively computing (1), a prediction of the system
state at the next sampling instant, for a given uk, can be
obtained. It is considered that the control outcome is repre-
sented by y, thus, the output references are defined by y⋆. For
the long horizon problem, it is convenient to define sequence
variables. In this way, uk inputs within Np are appended in a
stacked vector in a time-ascending order (TAO), defining the
switching sequence Uk ∈ VnuNp as follows:

Uk ≜
[
(uk)

T (uk+1)
T... (uk+Np−1)

T
]T

. (2)

Similarly, the output sequence Yk ∈ RnyNp and output
reference sequence Y ∗

k ∈ RnyNp are also established.
Regarding the control objectives, the FCS-MPC regulates

outputs along their references while also considering the
control effort. Thus, a standard FCS-MPC cost function is:

gk =

k+Np−1∑
ℓ=k

∥yℓ+1 − y⋆
ℓ+1∥22 + λ∥uℓ − uℓ−1∥22, (3)

where λ > 0 is a weighting factor that adjusts the trade-off
between output regulation and switching effort. Following this
definition, the FCS-MPC can be described as an optimization
problem that seeks the switching sequence that minimizes g:

U opt
k = argmin

Uk

gk (4a)

s. t. Uk ∈ VnuNp (4b)
f(xℓ,uℓ) ≤ 0,∀ℓ = k, ..., k +Np − 1 (4c)

where (4b) are the power converter topology integer input
constraints. The function f in (4c) defines other constraints
that must be met during the power converter operation.

1Unless otherwise specified, the following parameters are selected in the
tests: Lf = 2 mH, Cf = 50 µF. Load: R = 30 Ω and L = 20 mH. Dc-link:
700 V. Output reference voltage: 50 Hz, 230 Vrms (phase-to-ground).
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A. ILS transformation

The ILS method in [7] requires reformulation of the cost
function in matrix form. Through repeated use of (1), the
expression of the system state at time step ℓ + 1 for a given
switching sequence can be found:

xℓ+1 = Aℓ−k+1xk + [Aℓ−kB ... A0B]Uk. (5)

Combining (1) and (5), it is possible to obtain the following
expression for the output sequence Yk:

Yk = Γxk +ΥUk, (6)

where Υ and Γ are block matrices that depend on the system
model and whose definition can be found in the appendix.
Following (6), the cost function can be written in matrix form:

gk = ∥Γxk +ΥUk − Y ∗
k ∥22 + λ∥SUk −Euk−1∥22, (7)

where S and E are also found in the appendix. As can be seen,
the first term maintains the information about the output regu-
lation and the second term describes the control effort through
the prediction horizon. Following the procedure described in
[7], this expression can be reorganized by separating terms
that depend on the optimization variable Uk:

gk = (Uk)
TWUk + 2(Fk)

TUk + ϵk, (8)

where

W ≜ (Υ)TΥ+ λSTS (9a)

Fk ≜ (Υ)T(Γxk − Y ∗
k )− λSTEuk−1 (9b)

ϵk ≜ ∥Γxk − Y ∗
k ∥22 + λ∥Euk−1∥22. (9c)

The term ϵk is time-varying, but it does not depend on Uk.
Since the FCS-MPC optimization problem in (4) is defined as
argument minima, variables that do not depend on Uk do not
alter the solution of the problem, as they merely act as an offset
to the cost function. Taking advantage of this property, it is also
possible to add terms to the cost function that do not alter the
optimization problem. Hence, the term ±(Fk)

TW−1Fk can
be added to (8). Following the symmetric property resulting
from the definition of matrix W , a compact expression of the
cost function can be obtained:

gk = (Uk +W−1Fk)
TW (Uk +W−1Fk) +Λk, (10)

where Λk ≜ ϵk − (Fk)
TW−1Fk is defined to absorb terms

that do not influence the optimization problem. The expression
in (10) is a quadratic form that presents its minimum at
Uk = −W−1Fk. This vector is known as the unconstrained
solution to the optimization problem and is denoted as U unc

k ∈
RnuNp . In general, U unc

k /∈ VnuNp , thus it cannot be selected
as the solution to the optimization problem because it does
not meet the input constraints. However, its definition can be
incorporated in the cost function:

gk = (Uk −U unc
k )TW (Uk −U unc

k ) +Λk. (11)

This expression shows that the control algorithm must find
a suitable Uk that meets the constraints and is the closest to
U unc

k . This problem is known in mathematics as the closest
vector problem [15]. However, an additional operation is
needed to accommodate (11) to the closest vector problem.

B. Lattice generator matrix

The cost function must be transformed into a Euclidean
distance. This can be done by decomposition of matrix W
through Cholesky’s algorithm. Note that any other lower-upper
(LU) factorization of W where the factors are not the trans-
pose of each other, will not allow the desired simplification.

At this point, most works in the LPH-FCS-MPC literature
diverge as two different methods are used to compute the
factorization, with no clear insight on why one should select
either method. On one hand, several works follow the intuitive
consideration of applying Cholesky factorization to obtain a
nonsingular, upper triangular (UT) matrix R, which is the
Cholesky factor of W such that: W = RTR. This same
factorization can be expressed using the lower triangular (LT)
convention as: W = LsL

T
s , where Ls is LT. However,

both conventions are completely equivalent, as the Cholesky
factorization is provably unique [16]. In any case, W is
factorized into the multiplication of an LT matrix by a UT
matrix, in that order. To simplify (11), the transpose symbol
is required to the left. Thus, the UT convention is used for
this factorization method.

On the other hand, other works enunciate an alternative
method in which the standard Cholesky factorization is applied
on W−1. By inverting the resulting matrix, an LT matrix factor
of W , denoted as L, is obtained. However, this is a different
matrix than Ls, defined for the LT naming convention of the
standard Cholesky method. Rigorously, this alternative method
originates from applying a similar algorithm to Cholesky,
but doing so in reverse. As is known from linear Algebra,
Cholesky’s standard factorization method is an iterative al-
gorithm that sequentially computes the coefficients of the
factors starting on the upper left corner of the matrix and
proceeding to the next row until reaching the bottom right
corner [16]. However, a different factorization algorithm can
be defined by following Cholesky’s algorithm in reverse to
achieve a UL factorization where both matrices are also the
transpose of each other. This reverse Cholesky algorithm starts
in the bottom right corner and proceeds until reaching the
top left position. This method factors W into a UT matrix
multiplied by an LT matrix, in that order. To have the transpose
symbol in the left, the product of this factorization will be
expressed as: W = LTL. It is possible to demonstrate that
applying the reverse Cholesky algorithm to W must arrive
at the same result as the alternative method that applies the
standard Cholesky to W−1, i.e., W can be factorized in:

W = RTR︸ ︷︷ ︸
Standard Cholesky (LU)

= LTL︸︷︷︸
Reverse Cholesky (UL)

. (12)

Applying standard Cholesky to W−1:
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W−1 = V TV︸ ︷︷ ︸
LU

→ W = V −1(V T)−1︸ ︷︷ ︸
UL

→ L = (V T)−1.

(13)
Thus, standard Cholesky on W−1 can be used to reach

the reverse Cholesky factorization form. In any case, both
factorizations can be substituted in (11) to obtain an Euclidean
metric that allows one to define the LPH-FCS-MPC optimiza-
tion problem in ILS-form:

U opt
k = argmin

Uk

gk = argmin
Uk

∥HUk − Ū unc
k ∥22 (14a)

s. t. Uk ∈ VnuNp , (14b)

where H is selected as R or L depending on the factorization
method. From a geometrical standpoint, H represents a basis
of RnuNp that defines a linear transformation of the original
CF from a hyperellipsoid form into hyperspheres aligned with
the axes defined by the new basis and whose squared radii are
given by the CF. Note that the bar symbol is used to identify
vectors transformed to the new space. As such, Ū unc

k = HU unc
k

is the transformed unconstrained solution.
Since the Uk variable is not continuous, but rather a discrete

set of points in space, they form what is known as a lattice.
However, this original lattice lacks interest as the optimization
problem will be solved in the transformed space. For this, H
is known as a generator for lattice L, a discrete subgroup in the
nuNp-dimensional space defined by the set of points {Ūk =
HUk : Uk ∈ VnuNp}. In other words, lattice L is a VnuNp -
linear span of nuNp linearly independent vectors known as
the basis vectors hj , which are the columns of H .

In summary, the problem in (14) seeks the optimal lattice
point U opt

k with the shortest Euclidean distance in the trans-
formed space to the target Ū unc

k .
Computationally, the new formulation of the problem is

convenient due to the triangular property of H . ILS problems
such as (14) can be solved with sphere decoding techniques
which break down the computation of the Euclidean distance
into one-dimensional subproblems. As will be explained in the
next section, sphere decoding techniques constantly exploit
the triangular form of the lattice matrix to evaluate partial
distances without knowing the entire Uk sequence, as the zeros
in matrix H will cancel terms of the product regardless of the
value of the corresponding Uk components.

C. Time-Descending Order Formulation

In contrast to the standard formulation, a different definition
of Uk in time-descending order (TDO) is proposed in [17].
Following the TDO, the sequences through the prediction
horizon are defined backward in terms of time. Thus:

Uk ≜
[
(uk+Np−1)

T ... (uk+1)
T (uk)

T
]T

. (15)

Despite reversing the sequences, the fundamental relation-
ships between the different variables is maintained in the
prediction model. Thus, the LPH-FCS-MPC formulation is
the same, but the block matrices defined in the appendix are
flipped vertically and horizontally to accommodate the TDO
formulation, as seen in [17]. According to the definition of W

A B C

D E F

G H I

f(A) 0 0

0f(A,B,D,E)

f(A,B,C,D,E,F,G,H,I)

)
T

0

0 0

T

f(I)

f(I,H,F,E)

f(I,H,F,E,G,D,C,B,A)

Standard Cholesky: RTRW matrix in TAO Reverse Cholesky: LTL

W matrix in TDO

f(I) 0 0

0f(I,H,F,E)

f(I,H,F,E,G,D,C,B,A)

T

Standard Cholesky: RTR

I H G

F E D

C B A

0

0 0

T

f(A)

f(A,B,D,E)

f(A,B,C,D,E,F,G,H,I)

Reverse Cholesky: LTL

)))

) )))

,

,

Fig. 2. TAO and TDO Cholesky factorizations. The matrices inside the
parentheses represent RT and LT.

in (9a), the resulting matrix in the TDO formulation is then the
same matrix as the TAO, but the rows and columns are flipped
correspondingly. Therefore, the factorization of the TDO W
has the interesting property by which standard Cholesky yields
an R matrix which is in UT-form, but it is equal to the
L matrix obtained by reverse Cholesky, but vertically and
horizontally flipped. This can be understood by the fact that
the Cholesky factors are unique. Thus, when flipping W , the
only factors that standard Cholesky can find are the factors
found by reverse Cholesky in the original TAO formulation,
but flipped to a UT form. The same logic applies to reverse
Cholesky performed on the TDO W , where L is a flipped
version of the TAO R. Fig. 2 provides a visual representation
of this characterisic for clearer understanding.

III. SOLUTION TO THE ILS PROBLEM

Solving the ILS problem involves an enumeration of lattice
points to find the closest one to the target Ū unc

k . To avoid
exhaustive enumeration of all candidates, branch-and-bound
methods such as the SDA are typically employed to find
a solution in fewer steps. Advanced computational analysis
of the algorithm has derived the conclusion that, while a
polynomial upper bound for the algorithm’s complexity can
be found for problems of relatively small dimension, the
worst-case complexity is, in general, exponential. Therefore,
a significant amount of research has been devoted to the
definition of more efficient sphere decoding techniques for
different applications [10], [18], [19].

A. Basic Concepts

The SDA defines an enumeration strategy of candidates
in the space bounded by a given initial hypersphere S ini in
the transformed space. This initial hypersphere (of radius
ρini) is centered at the unconstrained solution Ū unc

k and is
characterized by containing the initial candidate U ini

k . The
definition of the initial hypersphere is as follows:

S ini ≜
{
U ini

k : (ρini
k )2 = ∥HU ini

k − Ū unc
k ∥22

}
, (16a)

s. t. ∥HU opt
k − Ū unc

k ∥22 ≤ ∥HU ini
k − Ū unc

k ∥22. (16b)
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Fig. 3. Three-layer Conventional SDA search tree for V = {0, 1}, nu = 1 and Np = 3. Basic SDA operations: “forward” (solid blue arrows), “sidetracking”
(dashed yellow arrows), and “backtracking” (dashed red arrows). a) Reverse Cholesky (FTE mode). b) Standard Cholesky (BTE mode).

Once an initial candidate U ini
k has been selected, the search

stage may begin. The algorithm enumerates different candi-
dates exploring one dimension of the input sequence in each
step. For this, the integer components of each possible Uk

candidate are represented as vertices of a connected graph in
tree form as can be seen in Fig. 3 for a TAO formulation.

Here, the relevance of selecting either R or L as H can be
observed, as it defines the exploration mode of the tree. This
is because to apply the sphere decoding principle, the search
must start at the row index of the generator matrix in which all
the coefficients are zero except for the main diagonal. Thus, the
LT form follows the FTE mode, whereas the UT form uses the
BTE mode. The FTE mode explores candidates starting from
the first time step, then advancing to future time steps. On the
contrary, the nodes in the BTE mode are enumerated backward
in terms of time. This fact does not impact the optimal solution
of the optimization problem, but it can be relevant from a
computational standpoint, as will be shown. Note that if a
TDO is selected, the relationship is reversed, as the tree is
explored in FTE mode with a UT generator matrix, and the
BTE mode must be followed if the LT matrix is selected.

To search lattice points, an enumeration strategy of vertices
in the connected graph, i.e. tree nodes, must be defined. Tree
nodes can be identified by two integer variables, a vertical
coordinate, i.e. the tree layer i : i ∈ [1, nuNp] and a horizontal
coordinate, i.e. the switch position variable j = Uk(i) : j ∈ V.
Unequivocal identification of a node is given by the partial
sequence Uk(1 : i) = [Uk(1) Uk(2) ... Uk(i)]

T in a
tree defined as FTE, or Uk(i : 3Np) = [Uk(i) Uk(i +
1) ... Uk(nuNp)]

T in a BTE mode tree. Nodes are explored
by updating the values (i, j) according to a predefined strategy.

Along with the enumeration of nodes, the Euclidean metric
defined in (14) is computed. However, since nodes are gen-
erally partial candidates, this calculation is performed incre-
mentally as each node in the tree represents a new component
in the sequence for which a partial squared radius can be
computed and accumulated to the total. To carry out this
process, it is convenient to define an nuNp-dimensional array
d2 that stores the cumulative sum of the partial squared radii
in each layer. In the TAO formulation, if generator matrix
H = L (FTE mode) is selected, the algorithm computes:

d2(i) = ∥H(i, 1 : i)Uk(1 : i)− Ū unc
k (i)∥22 + d2(i− 1), (17)

where H(i, 1 : i) is a vector formed by the first i elements
of the ith row of matrix H . Note that d2(0) = 0 and
d2(nuNp) = ρ2 is the Euclidean distance of an entire
sequence. If H = R, then the partial radius is computed as:

d2(i) = ∥H(i, i : nuNp)Uk(i : nuNp)−Ū unc
k (i)∥22+d2(i+1),

(18)
where H(i, i : nuNp) denotes the last i components of row i
of matrix H , d2(nuNp + 1) = 0, and d2(1) = ρ2.

B. Enumeration Strategies

Search strategies applied to tree graphs as the one presented
in Fig. 3 are typically classified as depth-first or breadth-first
[20]. Depth-first strategies prioritize exploring as far down
a branch of the search space as possible before moving to
a neighboring node in the same layer. In contrast, breadth-
first strategies explore neighbor nodes in the selected layer
before advancing to a different layer. The conventional SDA
follows a depth-first enumeration strategy where the partial
Euclidean distance of the current node is compared to that of
the incumbent solution, which is initialized to (ρini

k )2.
The search procedure can be decomposed into three basic

operations: “forward”, “sidetracking”, and “backtracking”, ap-
pearing in order of priority. In each node, the partial Euclidean
distance is compared to the cost of the incumbent solution. If
it is smaller, a “forward” operation is performed to continue
exploring the current branch. Otherwise, the SDA opts for
“sidetracking”, or “backtracking” in the case of a dead end
(bottom layer or suboptimal candidate). If a partial squared
radius exceeds the current best, the corresponding node is
guaranteed to be suboptimal. Thus, the subsequent branch can
be pruned without assessing the entire Uk sequence.

By performing early discards of candidates, the SDA can
achieve superior performance to an exhaustive enumeration
method. However, it is still limited in terms of achievable
performance due to its high computational variability and
search speed limitations. As a consequence, the SDA typically
needs the definition of an early termination criterion that
guarantees the bounding of the search process for a given
available calculation time regardless of optimal termination.
This criterion is typically defined for a specific number of
explored nodes Nmax

nod [21]. In general, real-time control can
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Fig. 4. Block diagram of LPH-FCS-MPC algorithm.

be ensured, but a certain degree of suboptimality is introduced
in the selected solutions. Due to this, recent research seeks
to define more powerful search techniques that can avoid the
effects of suboptimality to a greater extent [10]. In [14], a
parallel SDA was proposed by which the SDA tree is explored
concurrently in depth-first fashion.

A different approach is followed in breadth-first algorithms
such as the K-best SDA proposed in [22]. Breadth-first tech-
niques prioritize horizontal enumeration of nodes, performing
comparisons between neighbor nodes at the same tree level,
and developing a Kb number of nodes, which are the most
promising. This strategy can deliver good solutions with fixed
computational costs and a low number of evaluated nodes.
However, optimality is not guaranteed.

In general, different search strategies can be defined to
solve the optimization stage. Regardless of their inherent
characteristics, they are still affected by the complexity of
the optimization problem in terms of convergence speed and
suboptimality. The LPH-FCS-MPC control method based on
the ILS reformulation is summarized in Fig. 4.

IV. COMPLEXITY OF LATTICE SEARCH PROBLEMS

This section studies the properties of lattice generator matrix
H . A key concept to understand is that a single lattice L can
be represented by different bases that generate the same lattice.
However, not all bases will show identical computational
behavior. In optimization problems, such as the ILS, different
problem definitions are better conditioned than others. The
conditioning of a problem relates to the sensitivity of the so-
lution of said problem to changes in the input data. Typically, a
well-conditioned problem is more numerically stable than an
ill-conditioned problem, where the correct solution becomes
harder to find.

In lattice search problems, conditioning is related to the
way in which the basis vectors are disposed to facilitate the
search in terms of convergence speed. For this, it is desirable
that the basis vectors are pairwise as orthogonal as possible
[23]. Conveniently, it is possible to encapsulate this property
in different metrics rather than calculating every angle one by
one. For instance, it is known that when all basis vectors meet
this requirement, the determinant of the matrix H is equal to
the product of the lengths of the basis vectors [23]. In any
case, the determinant is less than or equal to this product.
Thus, the extent to which this equality is not met can be used

to measure how far from being orthogonal the basis vectors
are. This property is captured by Hadamard’s inequality:

|det(H)| ≤
n∏

j=1

∥hj∥. (19)

Another typical metric is the condition number (CN) of the
basis matrix H . The CN is associated with solving the linear
system Hx = b and measures the ratio of the relative error in
the solution x to a relative error in b or H [24]. In particular,
a perturbation of b may produce a relative change in x in the
same order of magnitude as the CN. Thus, well-conditioned
problems tend to exhibit lower CN values. The CN can be
calculated as follows:

CN = ∥H∥∥H−1∥. (20)

A. Equivalence of Lattices

To study the impact on the computational behavior of the
selection of either R or L as the lattice generator, it will first
be demonstrated if this selection influences the conditioning
of the problem. Two lattices are called equivalent if one can
be obtained from the other by rotation, reflection, scaling, or
a combination of these operations [25]. As can be understood,
two equivalent matrices will have the same conditioning, as
the basis vectors have the same angles. As is known from basic
algebra, rotation and reflection are operations represented by
orthogonal matrices. Thus, it must be demonstrated that R can
be obtained from L or vice versa multiplying by an orthogonal
matrix. Following (12), one can left-multiply the equation by
(RT)−1 and right-multiply by L−1 to obtain:

RL−1 = (RT)−1LT → RL−1 = (LR−1)T. (21)

Defining P ≜ RL−1, its inverse is P−1 = LR−1. Substitut-
ing into (21), it is possible to write: P = (P−1)T. Therefore,
matrix P is an orthogonal matrix. Since the definition of P
allows one to express R = PL, clearly basis R is the result of
an orthogonal change from basis L. Thus, the angles and the
norms of the basis vectors (columns) of R and L are identical.
As a consequence of this result, the conditioning metrics must
be equal for both bases.

B. Conditioning evaluation

In Fig. 5, Hadamard’s inequality and the CN are assessed
for both Cholesky factorizations in function of the tuning
parameter λ. Several conclusions can be drawn from this
result. First, both selected metrics seem to describe the prob-
lem conditioning very closely. Thus, the CN will be used
henceforth. Second, both factorizations produce an equally
conditioned lattice generator matrix, as was expected due to
their equivalence. Third, the problem conditioning is clearly
affected by the selection of λ. Since this weighting factor
is a penalty on the switching effort, this result implies that
setting a higher switching frequency has a negative impact on
the problem conditioning. Similarly, other system or control
parameters can be evaluated to assess how they will influence
the problem conditioning.
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In Fig. 6, conditioning metrics are presented for different
sampling frequencies, showing its notable influence on the
problem conditioning. In particular, a coarse discretization
worsens the conditioning of the problem. The same trend is ob-
served if the filter capacitor is smaller. This clearly highlights
how physical parameters in the system and control parameters
can have a large impact on the problem conditioning. Note
that the results in Fig. 6, are replicated for either formulation.

C. Coefficients distribution of matrices

The equivalence demonstrated in Section IV-A implies that
the norm of the columns of R and L must be identical.
However, this is not the case for the rows. When evaluating
the norm of the rows, the structure shown in Fig. 7 can
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Fig. 7. Norm of the i-row vectors of matrix H for different λ and Np = 7.

be observed. This structure originates from the distribution
of coefficients in matrix W . Recall its definition in (9a).
Considering the triangular nature of Υ, the multiplication
of ΥTΥ yields a matrix where the top left corner tends
to have the largest numbers in absolute value, while many
cancellations occur in the bottom right corner due to the zeros.
Note that this structure is not much modified by the addition
of the λSTS term, as this is a sparse matrix that only adds an
offset to the main diagonal and to two secondary diagonals.
Due to the sequential nature of the Cholesky algorithm, the
factors of matrix W are computed so that any upper-left
block from RT only depends on the corresponding upper-left
block of W , as seen in Fig. 2. Thus, RT tends to respect the
coefficient distribution in terms of relative size.

This is relevant because, as seen in Section III, each step of
the search procedure considers a new row of matrix H . Thus,
the distribution of the norms of each row defines the order
in which the Euclidean distance is computed. On one hand,
the FTE mode followed with L starts the search at i = 1.
In this mode, the algorithm will find relatively large weights
in the first steps. Therefore, the computed partial distances
converge faster to the full Euclidean distance in the first steps.
This allows the algorithm to bound the search space faster
and prune more branches. On the other hand, the BTE mode
followed with R starts the search at i = nuNp. However, due
to the structure of W , these rows hold relatively little informa-
tion. Thus, the algorithm needs to explore deeper nodes to get
conclusive measurements of the Euclidean distances to make
good pruning decisions. In conclusion, it is hypothesized that,
although the lattice conditioning is identical, the selection of
the FTE mode is crucial to speed up the search stage, as will
be evaluated in the next section.

V. PERFORMANCE EVALUATION

This section is dedicated to evaluate the concepts described
in Section IV with simulation and experimental results. For
this, the case study referenced in Section II is used. In general,
performance will be evaluated according to: a) Optimality
Op(%), defined as the percentage of time steps in a simulation
at which the optimal solution has been found, b) average
cost of the final solution, dµ, which is calculated for the
totality of the simulation time, and c) output voltage total
harmonic distortion, THD (%), which is selected as a measure
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TABLE I
VIVADO TESTBENCH RESULTS FOR 1000 OPTIMIZATION PROBLEMS

Total time (ms) Nnod / blocks
SDA 1 BTE 560.21 10185438
SDA 1 FTE 86.50 1572246
SDA 4 BTE 260.81 3934207
SDA 4 FTE 43.82 534440
SDA 8 BTE 181.82 2477722
SDA 8 FTE 31.65 285566

of controller performance to assess how search improvements
translate to control outcome.

Note that by following the TDO definition in [17], a UT
formulation explored in FTE is equivalent to the LT form in
the original TAO definition and the results in terms of search
efficiency are identical. Due to this equivalence, only results
for the TAO in BTE or FTE mode will be shown. The results
can be directly translated to the TDO definition by exchanging
the UT and LT matrix forms.

The first test is performed in Matlab/Simulink. The plant
is simulated with an LPH-FCS-MPC strategy with differ-
ent search techniques and different parameters. Results are
depicted in Fig. 8 and Fig. 9 in function of the resulting
average switching frequency F̄sw. As can be seen, opting
for an FTE mode provides important improvements in both
optimality and cost. This translates to better control outcome
as the harmonic performance is also improved when using
the same enumeration strategy. An exception is found in very
computationally limited situations, as shown in Fig. 8-c) for
the SDA1 FTE results if F̄sw > 2.5 kHz. In this case, the FTE
mode can be counterproductive because not all the switching
states corresponding to the first time step may be explored,
while in the BTE mode it is more likely that at least one
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Fig. 10. Calculation time histograms for Np = 7 in Vivado simulator.

instance of each FCS member is explored for the first time
step. In any case, such a limit situation should be avoided by
setting a shorter Np or using a more powerful search strategy.
Regarding control parameters, the results clearly reproduce
the conditioning metrics evaluated in Section IV. For a given
search strategy, a higher degree of optimality is obtained with
lower F̄sw or higher fs, due to the conditioning of the lattice.

A second benchmark is established in the Xilinx Vivado
simulation tool, where the different algorithms are allowed to
explore as many nodes as required to complete the search
process. For this test, 1000 optimization problems of size
Np = 7 are randomly generated. The initial solution is selected
as a null vector in all cases to disregard the influence of the
initial solution on the search stage. Through this approach,
it can be measured how many nodes and how much time
each algorithm will need to successfully complete all the
considered problems. The results are represented in Table I.
Also, calculation time histograms are presented in Fig. 10.
As can be seen, FTE strategies achieve a remarkable overall
reduction in calculation time.

In the third test, experiments are carried out with the lab-
oratory prototype shown in Fig. 11 and validated in terms of
the IEC 62040-3 standard for uninterruptible power supplies.
In one of the experiments, a depth-first search strategy is
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Fig. 11. Experimental test bench. Front and side view.

TABLE II
SUMMARY OF THE RESULTS

Sequence definition TAO TDO

Matrix form UT LT UT LT

Exploration Mode BTE FTE FTE BTE
H calculation costs Low High Low High

Optimization stage costs High Low Low High
Application example [14,21,22] [3,7,9] [17] N/A

implemented, and it is performed for a linear load and a set of
parameters. To validate a different case, a second experiment
is carried out with different parameters, a breadth-first strategy,
and with a nonlinear load. The resulting waveforms, along with
the dynamic and harmonic levels, are illustrated in Fig. 12
and Fig. 13. As can be seen, due to the nonlinear load, the
experiments in Fig. 13 show a distorted output current with
non-triplen odd harmonics. However, the controller is capable
of maintaining a reasonable harmonic quality in the regulated
output voltage despite the harmonic-polluted current drawn by
the rectifier load. Although there are important differences be-
tween both experiments, concerning the selected load, search
strategy and tuning parameters, a similar conclusion can be
extracted in regards to the selection of the exploration mode.
Clearly, an FTE mode can help the system to achieve better
THD and deviation metrics, making it easier to meet the IEC
standard for a given average switching frequency.

A summary of the comparative results for the different
formulations is provided in Table II.

VI. CONCLUSION

In this work, an analysis of the computational costs of LPH-
FCS-MPC is provided. The differences between several formu-
lations in the literature are described and analyzed. Mathemat-
ical properties of the resulting lattice generators are explored,
extracting conditioning metrics in function of different system
and control parameters. These properties are then assessed
by simulation and experimental results. In short, switching
sequences can be defined in a time-ascending order (TAO)
or a time-descending order (TDO) through the prediction
horizon. Depending on the selected factorization method of
W , the exploration mode of the tree is defined as backward-in-
time exploration (BTE) or forward-in-time exploration (FTE).
In any case, an upper triangular (UT) formulation avoids

one matrix inversion while computing H . Regarding the
optimization stage, it is shown that the FTE mode is superior
by almost one order of magnitude in terms of computational
costs. For this reason, a TDO formulation where a UT H is
obtained through standard Cholesky factorization is the best
overall option in terms of calculation costs. In time-invariant
systems where the matrix H can be computed offline, a TAO
definition with reverse Cholesky decomposition achieves the
same low computational cost. Thus, it can be favored in these
situations due to its more natural formulation. In any case,
it is shown that an FTE mode can remarkably help to boost
the computational performance during the optimization stage
regardless of the search technique. As a result, the optimization
problem underlying LPH-FCS-MPC is solved more quickly,
increasing the likelihood that the optimal solution is found in
the available time, improving overall performance.

APPENDIX

The expressions for the relevant LPH-FCS-MPC block
matrices in the TAO formulation are as follows:

Υ =


CB O . . . O
CAB CB . . . O

...
...

. . .
...

CANp−1B CANp−2B . . . CB

, Γ =


CA
CA2

...
CANp

,

S =


I O . . . O
−I I . . . O
O −I . . . O
...

...
. . .

...
O O . . . I

, and E =


I
O
...
O

.

The expressions for the relevant LPH-FCS-MPC block
matrices in the TDO formulation are as follows:

Υ =


CB CAB . . . CANp−1B
O CB . . . CANp−2B
...

...
. . .

...
O O . . . CB

, Γ =


CANp

CANp−1

...
CA

,

S =


I −I . . . O
−I I . . . O
O −I . . . O
...

...
. . .

...
O O . . . I

, and E =


O
O
...
I

.
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